Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology in the extreme

20.09.2010
Radio transmitters that can withstand temperatures of up to 900 oC could soon be dropped into the depths of the earth to provide early warning of a volcanic eruption.

The state-of-the-art technology being pioneered by experts at Newcastle University uses Silicon Carbide electronics that can withstand temperatures equal to the inside of a jet engine.

Measuring subtle changes in the levels of key volcanic gases such as carbon dioxide and sulphur dioxide, the wireless sensor would feed back real-time data to the surface, providing vital information about volcanic activity and any impending eruption.

And because of its unique molecular structure – which is more stable than silicon – Silicon Carbide also has a high radiation tolerance opening up possibilities for its use in the nuclear industry.

The team has developed the necessary components and are now working to integrate them into a device about the size of an iPhone that could be used in a variety of locations such as power plants, aircraft engines and even volcanoes.

The device, featured today in The Engineer, is one of a number of technologies which has been developed by experts at the university's Centre for Extreme Environment Technology, which was set up to 'go where no technology has gone before' and unlock the secrets of some of the world's harshest environments.

Building reliable components that will continue to work under these conditions has been an on-going challenge for electronic engineers and the team at Newcastle University is recognised as a world leader in the field.

Dr Alton Horsfall, who leads the Silicon Carbide work alongside Professor Nick Wright, explains: "At the moment we have no way of accurately monitoring the situation inside a volcano and in fact most data collection actually goes on post-eruption. With an estimated 500 million people living in the shadow of a volcano this is clearly not ideal.

"We still have some way to go but using silicon carbide technology we hope to develop a wireless communication system that could accurately collect and transmit chemical data from the very depths of a volcano."

And the device has other uses. "If someone sets off a bomb on the underground, for example, this will still sit on the wall and tell you what's going on," says Dr Horsfall.

Volcanic monitoring is just one of the strands of research being carried out at the Centre for Extreme Environment Technology.

With expertise in underwater communications, Professor Bayan Sharif, Jeff Neasham and Dr Charalampos Tsimenidis have developed a micro Remotely-Operated Vehicle that can be used to feed back environmental data about our coastlines. The team is also working on through metal communications which involves transmitting a signal through almost 10cm of steel and wireless sensor networks.

Professor Nick Wright, pro-vice chancellor for innovation and research at Newcastle University, added: "The situations we are planning to use our technology in means it's not enough for the electronics to simply withstand extremes of temperature, pressure or radiation – they have to continue operating absolutely accurately and reliably.

"Increasingly mankind is spreading out into harsher and more extreme environments as our population grows and we explore new areas for possible sources of energy and food in order to sustain it.

"But with this comes new challenges and this is why research into extreme technologies is becoming ever more important."

Louella Houldcroft | EurekAlert!
Further information:
http://www.ncl.ac.uk

Further reports about: Environment Newcastle carbide information technology power plant

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>