Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology in the extreme

20.09.2010
Radio transmitters that can withstand temperatures of up to 900 oC could soon be dropped into the depths of the earth to provide early warning of a volcanic eruption.

The state-of-the-art technology being pioneered by experts at Newcastle University uses Silicon Carbide electronics that can withstand temperatures equal to the inside of a jet engine.

Measuring subtle changes in the levels of key volcanic gases such as carbon dioxide and sulphur dioxide, the wireless sensor would feed back real-time data to the surface, providing vital information about volcanic activity and any impending eruption.

And because of its unique molecular structure – which is more stable than silicon – Silicon Carbide also has a high radiation tolerance opening up possibilities for its use in the nuclear industry.

The team has developed the necessary components and are now working to integrate them into a device about the size of an iPhone that could be used in a variety of locations such as power plants, aircraft engines and even volcanoes.

The device, featured today in The Engineer, is one of a number of technologies which has been developed by experts at the university's Centre for Extreme Environment Technology, which was set up to 'go where no technology has gone before' and unlock the secrets of some of the world's harshest environments.

Building reliable components that will continue to work under these conditions has been an on-going challenge for electronic engineers and the team at Newcastle University is recognised as a world leader in the field.

Dr Alton Horsfall, who leads the Silicon Carbide work alongside Professor Nick Wright, explains: "At the moment we have no way of accurately monitoring the situation inside a volcano and in fact most data collection actually goes on post-eruption. With an estimated 500 million people living in the shadow of a volcano this is clearly not ideal.

"We still have some way to go but using silicon carbide technology we hope to develop a wireless communication system that could accurately collect and transmit chemical data from the very depths of a volcano."

And the device has other uses. "If someone sets off a bomb on the underground, for example, this will still sit on the wall and tell you what's going on," says Dr Horsfall.

Volcanic monitoring is just one of the strands of research being carried out at the Centre for Extreme Environment Technology.

With expertise in underwater communications, Professor Bayan Sharif, Jeff Neasham and Dr Charalampos Tsimenidis have developed a micro Remotely-Operated Vehicle that can be used to feed back environmental data about our coastlines. The team is also working on through metal communications which involves transmitting a signal through almost 10cm of steel and wireless sensor networks.

Professor Nick Wright, pro-vice chancellor for innovation and research at Newcastle University, added: "The situations we are planning to use our technology in means it's not enough for the electronics to simply withstand extremes of temperature, pressure or radiation – they have to continue operating absolutely accurately and reliably.

"Increasingly mankind is spreading out into harsher and more extreme environments as our population grows and we explore new areas for possible sources of energy and food in order to sustain it.

"But with this comes new challenges and this is why research into extreme technologies is becoming ever more important."

Louella Houldcroft | EurekAlert!
Further information:
http://www.ncl.ac.uk

Further reports about: Environment Newcastle carbide information technology power plant

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>