Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology in the extreme

20.09.2010
Radio transmitters that can withstand temperatures of up to 900 oC could soon be dropped into the depths of the earth to provide early warning of a volcanic eruption.

The state-of-the-art technology being pioneered by experts at Newcastle University uses Silicon Carbide electronics that can withstand temperatures equal to the inside of a jet engine.

Measuring subtle changes in the levels of key volcanic gases such as carbon dioxide and sulphur dioxide, the wireless sensor would feed back real-time data to the surface, providing vital information about volcanic activity and any impending eruption.

And because of its unique molecular structure – which is more stable than silicon – Silicon Carbide also has a high radiation tolerance opening up possibilities for its use in the nuclear industry.

The team has developed the necessary components and are now working to integrate them into a device about the size of an iPhone that could be used in a variety of locations such as power plants, aircraft engines and even volcanoes.

The device, featured today in The Engineer, is one of a number of technologies which has been developed by experts at the university's Centre for Extreme Environment Technology, which was set up to 'go where no technology has gone before' and unlock the secrets of some of the world's harshest environments.

Building reliable components that will continue to work under these conditions has been an on-going challenge for electronic engineers and the team at Newcastle University is recognised as a world leader in the field.

Dr Alton Horsfall, who leads the Silicon Carbide work alongside Professor Nick Wright, explains: "At the moment we have no way of accurately monitoring the situation inside a volcano and in fact most data collection actually goes on post-eruption. With an estimated 500 million people living in the shadow of a volcano this is clearly not ideal.

"We still have some way to go but using silicon carbide technology we hope to develop a wireless communication system that could accurately collect and transmit chemical data from the very depths of a volcano."

And the device has other uses. "If someone sets off a bomb on the underground, for example, this will still sit on the wall and tell you what's going on," says Dr Horsfall.

Volcanic monitoring is just one of the strands of research being carried out at the Centre for Extreme Environment Technology.

With expertise in underwater communications, Professor Bayan Sharif, Jeff Neasham and Dr Charalampos Tsimenidis have developed a micro Remotely-Operated Vehicle that can be used to feed back environmental data about our coastlines. The team is also working on through metal communications which involves transmitting a signal through almost 10cm of steel and wireless sensor networks.

Professor Nick Wright, pro-vice chancellor for innovation and research at Newcastle University, added: "The situations we are planning to use our technology in means it's not enough for the electronics to simply withstand extremes of temperature, pressure or radiation – they have to continue operating absolutely accurately and reliably.

"Increasingly mankind is spreading out into harsher and more extreme environments as our population grows and we explore new areas for possible sources of energy and food in order to sustain it.

"But with this comes new challenges and this is why research into extreme technologies is becoming ever more important."

Louella Houldcroft | EurekAlert!
Further information:
http://www.ncl.ac.uk

Further reports about: Environment Newcastle carbide information technology power plant

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>