Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Which technologies get better faster?

18.05.2011
New analysis helps predict which new systems will be on a fast track to improvements in performance.

Some forms of technology — think, for example, of computer chips — are on a fast track to constant improvements, while others evolve much more slowly. Now, a new study by researchers at MIT and other institutions shows that it may be possible to predict which technologies are likeliest to advance rapidly, and therefore may be worth more investment in research and resources.

In a nutshell, the researchers found that the greater a technology’s complexity, the more slowly it changes and improves over time. They devised a way of mathematically modeling complexity, breaking a system down into its individual components and then mapping all the interconnections between these components.

"It gives you a way to think about how the structure of the technology affects the rate of improvement,” says Jessika Trancik, assistant professor of engineering systems at MIT. Trancik wrote the paper with James McNerney, a graduate student at Boston University (BU); Santa Fe Institute Professor Doyne Farmer; and BU physics professor Sid Redner. It appears online this week in the Proceedings of the National Academy of Sciences.

The team was inspired by the complexity of energy-related technologies ranging from tiny transistors to huge coal-fired powerplants. They have tracked how these technologies improve over time, either through reduced cost or better performance, and, in this paper, develop a model to compare that progress to the complexity of the design and the degree of connectivity among its different components.

The authors say the approach they devised for comparing technologies could, for example, help policymakers mitigate climate change: By predicting which low-carbon technologies are likeliest to improve rapidly, their strategy could help identify the most effective areas to concentrate research funding. The analysis makes it possible to pick technologies “not just so they will work well today, but ones that will be subject to rapid development in the future,” Trancik says.

Besides the importance of overall design complexity in slowing the rate of improvement, the researchers also found that certain patterns of interconnection can create bottlenecks, causing the pace of improvements to come in fits and starts rather than at a steady rate.

“In this paper, we develop a theory that shows why we see the rates of improvement that we see,” Trancik says. Now that they have developed the theory, she and her colleagues are moving on to do empirical analysis of many different technologies to gauge how effective the model is in practice. “We’re doing a lot of work on analyzing large data sets” on different products and processes, she says.

For now, she suggests, the method is most useful for comparing two different technologies “whose components are similar, but whose design complexity is different.” For example, the analysis could be used to compare different approaches to next-generation solar photovoltaic cells, she says. The method can also be applied to processes, such as improving the design of supply chains or infrastructure systems. “It can be applied at many different scales,” she says.

Koen Frenken, professor of economics of innovation and technological change at Eindhoven University of Technology in the Netherlands, says this paper “provides a long-awaited theory” for the well-known phenomenon of learning curves. “It has remained a puzzle why the rates at which humans learn differ so markedly among technologies. This paper provides an explanation by looking at the complexity of technology, using a clever way to model design complexity.”

Frenken adds, “The paper opens up new avenues for research. For example, one can verify their theory experimentally by having human subjects solve problems with different degrees of complexity.” In addition, he says, “The implications for firms and policymakers [are] that R&D should not only be spent on invention of new technologies, but also on simplifying existing technologies so that humans will learn faster how to improve these technologies.”

Ultimately, the kind of analysis developed in this paper could become part of the design process — allowing engineers to “design for rapid innovation,” Trancik says, by using these principles to determine “how you set up the architecture of your system.”

Marta Buczek | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>