Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Techniques Will Control Heat in Data Centers

04.06.2009
Approximately a third of the electricity consumed by large data centers doesn’t power the computer servers that conduct online transactions, serve Web pages or store information.

Instead, that electricity must be used for cooling the servers, a demand that continues to increase as computer processing power grows.

And the trend toward cloud computing will expand the need for both servers and cooling.

At the Georgia Institute of Technology, researchers are using a 1,100-square-foot simulated data center to optimize cooling strategies and develop new heat transfer models that can be used by the designers of future facilities and equipment. The goal is to reduce the portion of electricity used to cool data center equipment by as much as 15 percent.

“Computers convert electricity to heat as they operate,” said Yogendra Joshi, a professor in Georgia Tech’s Woodruff School of Mechanical Engineering. “As they switch on and off, transistors produce heat, and all of that heat must be ultimately transferred to the environment. If you are looking at a few computers, the heat produced is not that much. But data centers generate heat at the rate of tens of megawatts that must be removed.”

Summaries of the research have been published in the Journal of Electronic Packaging and International Journal of Heat and Mass Transfer and presented at the Second International Conference on Thermal Issues in Emerging Technologies, Theory and Applications. The research has been sponsored by the U.S. Office of Naval Research, and by the Consortium for Energy Efficient Thermal Management.

Five years ago, a typical refrigerator-sized server cabinet produced about one to five kilowatts of heat. Today, high-performance computing cabinets of about the same size produce as much as 28 kilowatts, and machines already planned for production will produce twice as much.

“Some people have called this the Moore’s Law of data centers,” observed Joshi, who is also the John M. McKenney and Warren D. Shiver Chair in the School of Mechanical Engineering. “The growth of cooling requirements parallels the growth of computing power, which roughly doubles every 18 months. That has brought the energy requirements of data centers into the forefront.”

Most existing data centers rely on large air conditioning systems that pump cool air to server racks. Data centers have traditionally used raised floors to allow space for circulating air beneath the equipment, but cooling can also come from the ceilings. As cooling demands have increased, data center designers have developed complex systems of alternating cooling outlets and hot air returns throughout the facilities.

“How these are arranged is very important to how much cooling power will be required,” Joshi said. “There are ways to rearrange equipment within data centers to promote better air flow and greater energy efficiency, and we are exploring ways to improve those.”

Before long, centers will likely have to use liquid cooling to replace chilled air in certain high-powered machines. That will introduce a new level of complexity for the data centers, and create differential cooling needs that will have to be accounted for in the design and maintenance.

Joshi and his students have assembled a small high-power-density data center on the Georgia Tech campus that includes different types of cooling systems, partitions to change room volumes and both real and simulated server racks. They use fog generators and lasers to visualize air flow patterns, infrared sensors to quantify heat, airflow sensors to measure the output of fans and other systems, and sophisticated thermometers to measure temperatures on server motherboards.

Beyond studying the effects of alternate airflow patterns, they are also verifying that cooling systems are doing what they’re supposed to do.

Because tasks are dynamically assigned to specific machines, heat generation varies in a data center. Joshi’s group is also exploring algorithms that could help even out the computing load by assigning new computationally-intensive tasks to cooler machines, avoiding hot spots.

Another issue they’re studying is what happens when utility-system power to a data center is cut off. The servers themselves continue to operate because they receive electricity from an uninterruptible power supply. But the cooling equipment is powered by backup generators, which can take minutes to get up to speed.

During the brief time without cooling, heat builds up in the servers. Existing computer models predict that temperatures will reach dangerous levels in a matter of seconds, but actual measurements done by Joshi’s graduate students show that the equipment can run for as much as six minutes without cooling.

“We’re developing models for different parts of the data center to learn how they respond to changes in temperature,” said Shawn Shields, a former graduate student in Joshi’s lab. “Existing models consider that temperature changes across a server rack will be instantaneous, but we’ve found that it takes quite a relatively long time for the server to reach a steady state.”

Beyond reducing cooling load, the researchers are also looking at how waste heat from data centers can be used. The problem is that the heat is at relatively low temperatures, which makes it inefficient to convert to other forms of energy. Options may include heating nearby buildings or pre-heating water, Joshi said.

Data obtained by the researchers with thermometers and airflow meters is being used to validate computer models that are reasonably accurate, but run rapidly. In the future, these models will help data center operators do a better job of optimizing cooling in real time, he said.

Joshi believes there’s potential to reduce data center energy consumption by as much as 15 percent by adopting more efficient cooling techniques like those under development in his lab.

“Our data center laboratory is a complete sandbox in which we can study all sorts of options without affecting anybody’s computing projects,” he added. “We can look at interesting ways to improve rack-level cooling, liquid cooling and thermoelectric cooling.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>