Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique to improve quality control of lithium-ion batteries

10.05.2013
Researchers have created a new tool to detect flaws in lithium-ion batteries as they are being manufactured, a step toward reducing defects and inconsistencies in the thickness of electrodes that affect battery life and reliability.
The electrodes, called anodes and cathodes, are the building blocks of powerful battery arrays like those used in electric and hybrid vehicles. They are copper on one side and coated with a black compound to store lithium on the other. Lithium ions travel from the anode to the cathode while the battery is being charged and in the reverse direction when discharging energy.

The material expands as lithium ions travel into it, and this expansion and contraction causes mechanical stresses that can eventually damage a battery and reduce its lifetime, said Douglas Adams, Kenninger Professor of Mechanical Engineering and director of the Purdue Center for Systems Integrity.

The coating is a complex mixture of carbon, particulates that store lithium, chemical binders and carbon black. The quality of the electrodes depends on this "battery paint" being applied with uniform composition and thickness.

"A key challenge is to be able to rapidly and accurately sense the quality of the battery paint," said James Caruthers, Reilly Professor of Chemical Engineering and co-inventor of the new sensing technology.

The Purdue researchers have developed a system that uses a flashbulb-like heat source and a thermal camera to read how heat travels through the electrodes. The "flash thermography measurement" takes less than a second and reveals differences in thickness and composition.

"This technique represents a practical quality-control method for lithium-ion batteries," Adams said. "The ultimate aim is to improve the reliability of these batteries."

Findings are detailed in a research paper being presented during the 2013 annual meeting of the Society for Experimental Mechanics, which is June 3-5 in Lombard, Ill. The paper was written by doctoral students Nathan Sharp, Peter O'Regan, Anand David and Mark Suchomel, and Adams and Caruthers.

The method uses a flashing xenon bulb to heat the copper side of the electrode, and an infrared camera reads the heat signature on the black side, producing a thermal image.

The researchers found that the viscous compound is sometimes spread unevenly, producing a wavelike pattern of streaks that could impact performance. Findings show the technology also is able to detect subtle differences in the ratio of carbon black to the polymer binder, which could be useful in quality control.

The technique also has revealed various flaws, such as scratches and air bubbles, as well as contaminants and differences in thickness, factors that could affect battery performance and reliability.

"We showed that we can sense these differences in thickness by looking at the differences in temperature," Adams said. "When there is a thickness difference of 4 percent, we saw a 4.8 percent rise in temperature from one part of the electrode to another. For 10 percent, the temperature was 9.2 percent higher, and for 17 percent it was 19.2 percent higher."

The thermal imaging process is ideal for a manufacturing line because it is fast and accurate and can detect flaws prior to the assembly of the anode and cathodes into a working battery.

"For example, if I see a difference in temperature of more than 1 degree, I can flag that electrode right on the manufacturing floor," Adams said. "The real benefit, we think, is not just finding flaws but also being able to fix them on the spot."

Purdue has applied for a patent on the technique.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Douglas E. Adams, 765-449-4249, deadams@purdue.edu

James Caruthers, 756-494-6625, caruthers@purdue.edu

ABSTRACT
Lithium-ion Battery Electrode Inspection Using Flash Thermography

Nathan Sharp, Douglas Adams, James Caruthers, Peter O'Regan, Anand David, Mark Suchomel

Purdue University

Nonuniformity in lithium-ion battery electrode thickness or composition can lead to reduced performance and longevity. Currently battery manufacturers have no way to quickly and accurately assess electrode quality during the manufacturing process. A finite element heat transfer model based on heat conduction equations has been developed to provide theoretical justification and insight. The model shows that a heat pulse to the back of a current collector will conduct through the electrode in such a way that spatial changes in thickness or material properties will have different transient temperature responses and that the response difference will be maximum around 3-10 ms after the flash occurs. Experiments were run to test the effectiveness of the flash thermography method for detecting several different types of defects. Gross defects such as contaminants, scratches and bubbles were shown to be easily detectable. Thickness variation was also tested and shown to have a sensitivity of 1 percent change in temperature for 1 percent change in thickness. Thickness differences were shown to be detectable in at least as small as 4 percent thickness difference. Composition differences were also tested, looking at the difference in relative percentage of active material, carbon black, and PVDF. Not enough data was taken to quantify the sensitivities of composition changes, but testing was shown to be able to detect composition differences. Thermography testing also showed a wavelike thickness pattern occurring, which has not previously been reported on battery electrodes. Comparison with a commercially purchased electrode showed that this phenomenon exists on the commercial electrode as well. Further testing needs to be conducted to determine the cause of this phenomenon, but it is hypothesized that is due either to a vibration in the coater blade or a nonlinear fluid interaction of the electrode slurry. Results and analysis show that flash thermography is a viable method to detect variability and defects in battery electrodes during the manufacturing process.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>