Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Creates Realistic Robot Carp, First Robot Fish with Autonomous 3-D Movement in Asia

27.06.2013
Research paves the way for the designing and engineering of more efficient autonomous underwater vehicles for wide-range applications, including military and underwater terrain exploration.

A team of researchers from the National University of Singapore’s (NUS) Department of Electrical & Computer Engineering has developed a robot fish that mimics the movements of a carp. This robot which is essentially an autonomous underwater vehicle (AUV) is ready for applications, as it can be programmed to perform specific functions, for example, for underwater archaeology such as exploring nooks and corners of wreckage -- or sunken city which are difficult for divers or traditional AUVs to access. Other applications include military activities, pipeline leakage detection, and the laying of communication cable.

The team comprises Professor Xu Jianxin, Mr Fan Lupeng, graduating Electrical Engineering student and Research Fellow, Dr Ren Qinyuan. Mr Fan worked on the project for his final year which won the High Achievement Award at the Faculty’s 27th Innovation and Research Award. It will also be featured at the IEEE/RSJ International Conference on Intelligent Robots and Systems, a top international conference on intelligent robots, in Tokyo on 3-7 November 2013.

Said Prof Xu, “Currently, robot fish capable of 2-D movements are common, meaning that these models are not able to dive into the water. Our model is capable of 3-D movements as it can dive and float, using its fins like a real fish. Compared to traditional AUVs, they are certainly more mobile, with greater manoeuvrability. If used for military purpose, fish robots would definitely be more difficult to detect by the enemy.”

Fish robots are also quieter and consume less energy, compared to traditional AUVs. Said Mr Fan who studied the movements of real life carps for three months, in order to develop their robot, “We chose to study carps because most fish swim like them. There is no literature at all on designing a mathematical model on the locomotion of fish and so we had to start from scratch. We used a camera to capture all the possible movements of a carp and then converted the data mathematically so that we could transfer the locomotion of real carp to our robot using different actuators.”

This has been most challenging as fish use a lot of different muscles to move, and many actuators are required to enable the robot to move in the same manner.

Added Dr Ren, “Some fish can achieve almost 180 degree turning in a small turning radius through bending their body while traditional underwater vehicles have a much larger turning radius. Hence it is quite a feat for us to achieve this movement in our robot fish.”

Other challenges included waterproofing the fish body, the motor and the control box. The fins and tails also need to be flexible and the team decided to use very fine (1mm) acrylic board for these. Buoyancy and balance for the robot is maintained by using plastic foams attached to both sides. For the diving mechanism, their robot fish is equipped with an internal ballast system to change density. The system is sophisticated enough to enable the fish to dive suddenly, as well as to the precise depth intended.

The team has constructed two fish robots. The larger prototype is about one and half metres in length, weighing about 10kg and it can dive to a depth of 1.8 metres. The smaller robot is about 60 centimetres long and weighs a mere 1.5kg. It is developed for investigation on 2D motion control and motion planning in a small place, and it can only swim at water surface.

“To my knowledge, the world’s smallest fish robot is one about 12.7 centimetres (5 inches) in length. It was designed by MIT for specific military purpose and could go to a depth of 1.5 metres,” said Dr Ren.

Moving forward

Underwater vehicles have long gone past the days of the submarines, said Mr Fan. Fish robots, besides being a micro submarine, can also be fully autonomous and can be programmed to perform many difficult and dangerous tasks.

The team hopes to make their robot fish even smaller and more realistic. Said Mr Fan, ”We intend to equip it with more sensors like GPS and video camera to improve autonomous 3-D movement. We also intend to test out our fish with more challenging tasks such as object detection.”

Images and their captions can be downloaded at (link will expire on 10 July 2013): https://www.yousendit.com/download/WFJYYUl2cGsyWGR2TzhUQw. Please attribute image credits to: National University of Singapore.

For media enquiries, please contact:

Karen LOH
Senior Manager, Media Relations
Office of Corporate Relations
National University of Singapore
DID: (65) 6601 1485
Email: karenloh@nus.edu.sg
About National University of Singapore (NUS)
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore’s flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.
NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 37,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.

NUS has three Research Centres of Excellence (RCE) and 23 university-level research institutes and centres. It is also a partner in Singapore’s 5th RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.

For more information, please visit www.nus.edu.sg

Karen LOH | Newswise
Further information:
http://www.nus.edu.sg

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>