Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Creates Realistic Robot Carp, First Robot Fish with Autonomous 3-D Movement in Asia

27.06.2013
Research paves the way for the designing and engineering of more efficient autonomous underwater vehicles for wide-range applications, including military and underwater terrain exploration.

A team of researchers from the National University of Singapore’s (NUS) Department of Electrical & Computer Engineering has developed a robot fish that mimics the movements of a carp. This robot which is essentially an autonomous underwater vehicle (AUV) is ready for applications, as it can be programmed to perform specific functions, for example, for underwater archaeology such as exploring nooks and corners of wreckage -- or sunken city which are difficult for divers or traditional AUVs to access. Other applications include military activities, pipeline leakage detection, and the laying of communication cable.

The team comprises Professor Xu Jianxin, Mr Fan Lupeng, graduating Electrical Engineering student and Research Fellow, Dr Ren Qinyuan. Mr Fan worked on the project for his final year which won the High Achievement Award at the Faculty’s 27th Innovation and Research Award. It will also be featured at the IEEE/RSJ International Conference on Intelligent Robots and Systems, a top international conference on intelligent robots, in Tokyo on 3-7 November 2013.

Said Prof Xu, “Currently, robot fish capable of 2-D movements are common, meaning that these models are not able to dive into the water. Our model is capable of 3-D movements as it can dive and float, using its fins like a real fish. Compared to traditional AUVs, they are certainly more mobile, with greater manoeuvrability. If used for military purpose, fish robots would definitely be more difficult to detect by the enemy.”

Fish robots are also quieter and consume less energy, compared to traditional AUVs. Said Mr Fan who studied the movements of real life carps for three months, in order to develop their robot, “We chose to study carps because most fish swim like them. There is no literature at all on designing a mathematical model on the locomotion of fish and so we had to start from scratch. We used a camera to capture all the possible movements of a carp and then converted the data mathematically so that we could transfer the locomotion of real carp to our robot using different actuators.”

This has been most challenging as fish use a lot of different muscles to move, and many actuators are required to enable the robot to move in the same manner.

Added Dr Ren, “Some fish can achieve almost 180 degree turning in a small turning radius through bending their body while traditional underwater vehicles have a much larger turning radius. Hence it is quite a feat for us to achieve this movement in our robot fish.”

Other challenges included waterproofing the fish body, the motor and the control box. The fins and tails also need to be flexible and the team decided to use very fine (1mm) acrylic board for these. Buoyancy and balance for the robot is maintained by using plastic foams attached to both sides. For the diving mechanism, their robot fish is equipped with an internal ballast system to change density. The system is sophisticated enough to enable the fish to dive suddenly, as well as to the precise depth intended.

The team has constructed two fish robots. The larger prototype is about one and half metres in length, weighing about 10kg and it can dive to a depth of 1.8 metres. The smaller robot is about 60 centimetres long and weighs a mere 1.5kg. It is developed for investigation on 2D motion control and motion planning in a small place, and it can only swim at water surface.

“To my knowledge, the world’s smallest fish robot is one about 12.7 centimetres (5 inches) in length. It was designed by MIT for specific military purpose and could go to a depth of 1.5 metres,” said Dr Ren.

Moving forward

Underwater vehicles have long gone past the days of the submarines, said Mr Fan. Fish robots, besides being a micro submarine, can also be fully autonomous and can be programmed to perform many difficult and dangerous tasks.

The team hopes to make their robot fish even smaller and more realistic. Said Mr Fan, ”We intend to equip it with more sensors like GPS and video camera to improve autonomous 3-D movement. We also intend to test out our fish with more challenging tasks such as object detection.”

Images and their captions can be downloaded at (link will expire on 10 July 2013): https://www.yousendit.com/download/WFJYYUl2cGsyWGR2TzhUQw. Please attribute image credits to: National University of Singapore.

For media enquiries, please contact:

Karen LOH
Senior Manager, Media Relations
Office of Corporate Relations
National University of Singapore
DID: (65) 6601 1485
Email: karenloh@nus.edu.sg
About National University of Singapore (NUS)
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore’s flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.
NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 37,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.

NUS has three Research Centres of Excellence (RCE) and 23 university-level research institutes and centres. It is also a partner in Singapore’s 5th RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.

For more information, please visit www.nus.edu.sg

Karen LOH | Newswise
Further information:
http://www.nus.edu.sg

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>