Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team aims to make sugarcane, sorghum into oil-producing crops

02.03.2012
With the support of a $3.2 million grant from the U.S. Department of Energy, researchers will take the first steps toward engineering two new oil-rich crops.

They aim to boost the natural, oil-producing capabilities of sugarcane and sorghum, increase the crops’ photosynthetic power and – in the case of sugarcane – enhance the plant’s cold tolerance so that it can grow in more northerly climes.

The initiative, led by researchers at the University of Illinois in collaboration with scientists at the University of Florida, the University of Nebraska and the Brookhaven National Laboratory, will make use of recent advances in plant biotechnology and computer modeling to produce high-yielding, cold-tolerant, photosynthetically efficient crops that can be used in the production of biodiesel and jet fuel.

“Plants already have all the genetic apparatus to make oils,” said Illinois crop sciences and Institute for Genomic Biology professor Stephen Long, who leads the initiative. “It’s in their genomes.”

Once they have matured, sugarcane and sorghum spend much of their energy making and storing sugars, he said.

“We are proposing to subvert that mechanism in the plant to, instead of making sugar, use the products of photosynthesis to make oils and deposit those in the stems.”

These natural plant oils, known as triacylglycerols, can be converted into diesel and jet fuel by a chemical process known as hydro-treatment.
“Ethanol is somewhat problematic in that we don’t have any pipelines for distributing it around the country,” Long said. “And we have to deal with the blend-wall – that is, most current cars cannot deal with more than 10 percent ethanol, setting a limit on the amount of gasoline we can replace at present.”
Traditional oil-producing plants, such as soybeans, can’t produce enough oil per unit of land to make this approach cost effective in the long-term without subsidies, Long said. But sugarcane and sorghum, which are among the most productive plants in agriculture, could feasibly produce more than 10 times the amount of oil per acre of crops such as canola and soybean, Long said.

The new work will build on previous studies that have identified genes that enhance oil production in plants and genes that boost their photosynthetic efficiency.

Long and his colleagues also will make use of their knowledge of Miscanthus x giganteus, a perennial grass already used as a biofuels feedstock. The use of this new crop was first pioneered in the U.S. at the U. of I. Miscanthus can grow up to 13 feet (3.9 meters) tall and is closely related to sugarcane but is much more tolerant of cold weather. The researchers hope to introduce the genes that enhance its cold tolerance into sugarcane, which today can survive only in the hottest parts of southern U.S. states.

Another project will look at engineering bacteria to produce diesel directly and, once the process is streamlined in the bacterium, transfer the critical genes to sugarcane and sorghum.

“Sorghum and sugarcane will grow on quite poor land, so this should be doable without competing with food-crop production,” Long said. “The amount (of oil) we can get per unit (of) land area really makes this economically very viable as well, so I think it has the potential to give significant energy security to the country.”

Long said he expects to have early “proof of concept” results within 18 months.
Editor’s note: To reach Stephen Long, call 217-333-9396;
email slong@illinois.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>