Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team aims to make sugarcane, sorghum into oil-producing crops

02.03.2012
With the support of a $3.2 million grant from the U.S. Department of Energy, researchers will take the first steps toward engineering two new oil-rich crops.

They aim to boost the natural, oil-producing capabilities of sugarcane and sorghum, increase the crops’ photosynthetic power and – in the case of sugarcane – enhance the plant’s cold tolerance so that it can grow in more northerly climes.

The initiative, led by researchers at the University of Illinois in collaboration with scientists at the University of Florida, the University of Nebraska and the Brookhaven National Laboratory, will make use of recent advances in plant biotechnology and computer modeling to produce high-yielding, cold-tolerant, photosynthetically efficient crops that can be used in the production of biodiesel and jet fuel.

“Plants already have all the genetic apparatus to make oils,” said Illinois crop sciences and Institute for Genomic Biology professor Stephen Long, who leads the initiative. “It’s in their genomes.”

Once they have matured, sugarcane and sorghum spend much of their energy making and storing sugars, he said.

“We are proposing to subvert that mechanism in the plant to, instead of making sugar, use the products of photosynthesis to make oils and deposit those in the stems.”

These natural plant oils, known as triacylglycerols, can be converted into diesel and jet fuel by a chemical process known as hydro-treatment.
“Ethanol is somewhat problematic in that we don’t have any pipelines for distributing it around the country,” Long said. “And we have to deal with the blend-wall – that is, most current cars cannot deal with more than 10 percent ethanol, setting a limit on the amount of gasoline we can replace at present.”
Traditional oil-producing plants, such as soybeans, can’t produce enough oil per unit of land to make this approach cost effective in the long-term without subsidies, Long said. But sugarcane and sorghum, which are among the most productive plants in agriculture, could feasibly produce more than 10 times the amount of oil per acre of crops such as canola and soybean, Long said.

The new work will build on previous studies that have identified genes that enhance oil production in plants and genes that boost their photosynthetic efficiency.

Long and his colleagues also will make use of their knowledge of Miscanthus x giganteus, a perennial grass already used as a biofuels feedstock. The use of this new crop was first pioneered in the U.S. at the U. of I. Miscanthus can grow up to 13 feet (3.9 meters) tall and is closely related to sugarcane but is much more tolerant of cold weather. The researchers hope to introduce the genes that enhance its cold tolerance into sugarcane, which today can survive only in the hottest parts of southern U.S. states.

Another project will look at engineering bacteria to produce diesel directly and, once the process is streamlined in the bacterium, transfer the critical genes to sugarcane and sorghum.

“Sorghum and sugarcane will grow on quite poor land, so this should be doable without competing with food-crop production,” Long said. “The amount (of oil) we can get per unit (of) land area really makes this economically very viable as well, so I think it has the potential to give significant energy security to the country.”

Long said he expects to have early “proof of concept” results within 18 months.
Editor’s note: To reach Stephen Long, call 217-333-9396;
email slong@illinois.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>