Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team aims to make sugarcane, sorghum into oil-producing crops

With the support of a $3.2 million grant from the U.S. Department of Energy, researchers will take the first steps toward engineering two new oil-rich crops.

They aim to boost the natural, oil-producing capabilities of sugarcane and sorghum, increase the crops’ photosynthetic power and – in the case of sugarcane – enhance the plant’s cold tolerance so that it can grow in more northerly climes.

The initiative, led by researchers at the University of Illinois in collaboration with scientists at the University of Florida, the University of Nebraska and the Brookhaven National Laboratory, will make use of recent advances in plant biotechnology and computer modeling to produce high-yielding, cold-tolerant, photosynthetically efficient crops that can be used in the production of biodiesel and jet fuel.

“Plants already have all the genetic apparatus to make oils,” said Illinois crop sciences and Institute for Genomic Biology professor Stephen Long, who leads the initiative. “It’s in their genomes.”

Once they have matured, sugarcane and sorghum spend much of their energy making and storing sugars, he said.

“We are proposing to subvert that mechanism in the plant to, instead of making sugar, use the products of photosynthesis to make oils and deposit those in the stems.”

These natural plant oils, known as triacylglycerols, can be converted into diesel and jet fuel by a chemical process known as hydro-treatment.
“Ethanol is somewhat problematic in that we don’t have any pipelines for distributing it around the country,” Long said. “And we have to deal with the blend-wall – that is, most current cars cannot deal with more than 10 percent ethanol, setting a limit on the amount of gasoline we can replace at present.”
Traditional oil-producing plants, such as soybeans, can’t produce enough oil per unit of land to make this approach cost effective in the long-term without subsidies, Long said. But sugarcane and sorghum, which are among the most productive plants in agriculture, could feasibly produce more than 10 times the amount of oil per acre of crops such as canola and soybean, Long said.

The new work will build on previous studies that have identified genes that enhance oil production in plants and genes that boost their photosynthetic efficiency.

Long and his colleagues also will make use of their knowledge of Miscanthus x giganteus, a perennial grass already used as a biofuels feedstock. The use of this new crop was first pioneered in the U.S. at the U. of I. Miscanthus can grow up to 13 feet (3.9 meters) tall and is closely related to sugarcane but is much more tolerant of cold weather. The researchers hope to introduce the genes that enhance its cold tolerance into sugarcane, which today can survive only in the hottest parts of southern U.S. states.

Another project will look at engineering bacteria to produce diesel directly and, once the process is streamlined in the bacterium, transfer the critical genes to sugarcane and sorghum.

“Sorghum and sugarcane will grow on quite poor land, so this should be doable without competing with food-crop production,” Long said. “The amount (of oil) we can get per unit (of) land area really makes this economically very viable as well, so I think it has the potential to give significant energy security to the country.”

Long said he expects to have early “proof of concept” results within 18 months.
Editor’s note: To reach Stephen Long, call 217-333-9396;

Diana Yates | University of Illinois
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>