Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tapping into Previously Unused Green Electricity

11.03.2013
A highly dynamic technology from Siemens should make it possible to store wind and solar-generated electricity that would previously have gone unused by converting excess power into hydrogen.

Electrolysis can react to fluctuations in the supply generated by renewable energy in a matter of milliseconds - much faster than previous methods. The prototype of a storage facility equipped with PEM technology produces between two and six kilograms of hydrogen per hour.



One such facility, which is rated at 0.3 megawatts at peak capacity, went into operation at the Coal Innovation Centre at the RWE power plant in Nieder­außem as part of the CO2RRECT (CO2‑Reaction using Regenerative Energies and Catalytic Technologies) project.

It will simulate operational situations resulting from conditions that could be caused by fluctuations in the amount of electricity fed into the grid. Siemens and its partners in the project, including RWE, Bayer, and ten academic institutions, aim to use electrolytically harvested hydrogen to convert carbon dioxide into a raw material that can be used in the industrial production of chemicals.

Energy storage facilities for electricity from renewable sources are important components of the energy transition. Compressed hydrogen gas has a high energy density and could be stored in underground salt caverns, for example. When desired, the hydrogen can be converted to electricity, and it can also be used as a fuel and as a raw material for industry. Until now, electrolysis facilities were not conceived or designed to be able to react flexibly to large energy fluctuations.

At Siemens' Industry Sector a new low-maintenance electrolysis technology has been developed based on research from Corporate Technology. In the electrolyzer a proton exchange membrane (PEM) separates the electrodes on which hydrogen and oxygen form. One reason this electrolyzer can react so quickly is that the membrane is very stable in response to pressure differences in the two gas chambers. Because it is equipped with internal cooling and is designed for high current densities, it can easily handle three times its rated capacity for some time and needs almost no electricity at all when in standby mode.

Smaller versions of this system could soon be installed at filling stations to produce hydrogen for fuel cell vehicles. Modular systems with outputs of up to ten megawatts should be available in a few years. These would be appropriate for industrial and other applications.

In the long term, systems using PEM electrolysis should be able to operate in the triple-digit megawatt range that would be necessary to handle the output of offshore wind farms and/or provide load balancing capacity for primary and secondary control reserves. Siemens will continue to develop the design, materials, and manufacturing processes for PEM electrolysis.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>