Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tapping into Previously Unused Green Electricity

11.03.2013
A highly dynamic technology from Siemens should make it possible to store wind and solar-generated electricity that would previously have gone unused by converting excess power into hydrogen.

Electrolysis can react to fluctuations in the supply generated by renewable energy in a matter of milliseconds - much faster than previous methods. The prototype of a storage facility equipped with PEM technology produces between two and six kilograms of hydrogen per hour.



One such facility, which is rated at 0.3 megawatts at peak capacity, went into operation at the Coal Innovation Centre at the RWE power plant in Nieder­außem as part of the CO2RRECT (CO2‑Reaction using Regenerative Energies and Catalytic Technologies) project.

It will simulate operational situations resulting from conditions that could be caused by fluctuations in the amount of electricity fed into the grid. Siemens and its partners in the project, including RWE, Bayer, and ten academic institutions, aim to use electrolytically harvested hydrogen to convert carbon dioxide into a raw material that can be used in the industrial production of chemicals.

Energy storage facilities for electricity from renewable sources are important components of the energy transition. Compressed hydrogen gas has a high energy density and could be stored in underground salt caverns, for example. When desired, the hydrogen can be converted to electricity, and it can also be used as a fuel and as a raw material for industry. Until now, electrolysis facilities were not conceived or designed to be able to react flexibly to large energy fluctuations.

At Siemens' Industry Sector a new low-maintenance electrolysis technology has been developed based on research from Corporate Technology. In the electrolyzer a proton exchange membrane (PEM) separates the electrodes on which hydrogen and oxygen form. One reason this electrolyzer can react so quickly is that the membrane is very stable in response to pressure differences in the two gas chambers. Because it is equipped with internal cooling and is designed for high current densities, it can easily handle three times its rated capacity for some time and needs almost no electricity at all when in standby mode.

Smaller versions of this system could soon be installed at filling stations to produce hydrogen for fuel cell vehicles. Modular systems with outputs of up to ten megawatts should be available in a few years. These would be appropriate for industrial and other applications.

In the long term, systems using PEM electrolysis should be able to operate in the triple-digit megawatt range that would be necessary to handle the output of offshore wind farms and/or provide load balancing capacity for primary and secondary control reserves. Siemens will continue to develop the design, materials, and manufacturing processes for PEM electrolysis.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>