Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tandem solar cells are simply better

23.11.2015

Stacking two solar cells one over the other has advantages: Because the energy is “harvested” in two stages, and overall the sunlight can be converted to electricity more efficiently. Empa researchers have come up with a procedure that makes it possible to produce thin film tandem solar cells in which a thin perovskite layer is used. The processing of perovskite takes place at just 50 degrees Celsius and such a process is potentially applicable for low cost roll-to-roll production in future.

What is true for double-blade razors is also true for solar cells: two work steps are more thorough than one. Stacking two solar cells one on top of the other, where top cell is semi-transparent, which efficiently converts large energy photons into electricity, while the bottom cell converts the remaining or transmitted low energy photons in an optimum manner.


The semi-transparent perovskite solar cell absorbs UV, blue and yellow visible light. It allows red light and infrared radiation to pass through. Based on this principle, a “tandem solar

Empa

This allows a larger portion of the light energy to be converted to electricity. Up to now, the sophisticated technology needed for the procedure was mainly confined to the realm of Space or Concentrated Photovoltaics (CPV). These “tandem cells” grown on very expensive single crystal wafers are considered not attractive for mass production and low cost solar electricity.

The research team working under Stephan Buecheler and Ayodhya N. Tiwari from the Laboratory for Thin Films and Photovoltaics at Empa-Swiss Federal Laboratories for Material Science and Technology has now succeeded in making tandem solar cells that are based on polycrystalline thin films, and the methods are suitable for large area low cost processing, Flexible plastic or metal foils could also be used as substrate in future. This marks a major milestone on the path to mass production of high-efficiency solar cells with low cost processes.

The secret behind the new process is that the researchers create the top solar cell perovskite film with a low-temperature procedure at just 50 degrees Celsius. This promises an energy-saving and cost-saving production stage for future manufacturing processes. The tandem solar cell yielded an efficiency rate of 20.5% when converting light to electricity. Already with this first attempt Empa researchers have emphasized that it has lots more potential to offer for better conversion of solar spectrum into electricity.

Molecular soccer balls as a substrate for the magic Crystal

The key to this double success was the development of a 14.2% efficient semi-transparent solar cell, with 72% average transparency, made from methylammonium lead iodide deposited in the form of tiny perovskite crystals. The perovskite is grown on a thin interlayer made of the substance abbreviated as PCBM (phenyl-C61-butyric acid methyl ester) is used.

Each PCBM molecule contains 61 carbon atoms interconnected in the shape of a soccer ball. The perovskite film is prepared by a combination of vapour deposition and spin coating onto this layer, which has tiny football like structure, followed by an annealing at a “lukewarm” temperature. This magic perovskite crystal absorbs blue and yellow spectrum of visible light and converts these into electricity. By contrast, red light and infrared radiation simply pass through the crystal. As a result, the researchers can attach a further solar cell underneath the semi-transparent perovskite cell in order to convert the remaining light into electricity.

Advantage of the double-layer cell: better use of the spectrum of sunlight

For the lower layer of the tandem solar cell, the Empa researchers use a CIGS cell (copper indium gallium diselenide), a technique that the team has been researching for years. Based on the CIGS cells, small-scale production is already under way for flexible solar cells (see Empa News from 11 June 2015). The advantage of tandem solar cells is that they exploit sunlight better.

A solar cell can only convert radiation with an energy level higher than the bandgap of the semiconductor used. If the radiation energy is lower, no electricity is generated. If the radiation is higher in energy, the excess radiated energy is converted to heat and is lost. A double-layer solar cell like Empa’s perovskite CIGS cell can combine substances with differing bandgaps and thus efficiently convert a larger share of the incident solar energy to electricity.

More than 30% efficiency is possible

While very good single-layer polycrystalline solar cell may practically convert a maximum of 25% of the solar energy to electricity, tandem solar cells could increase this figure to beyond 30%. That’s according to Ayodhya Tiwari, head of the Thin Film and Photovoltaics laboratory. He does say, however, that a lot of research work is needed before that will be possible.

“What we have achieved now is just the beginning. We will have to overcome many obstacles before reaching this ambitious goal. To do this, we will need lots of interdisciplinary experience and a large number of combinatorial experiments until we have found a semi-transparent high-performance cell together with the right base cell, and technologies for electrical interconnections of these solar cells.”

Stephan Bücheler, who coordinates the lab research in Tiwari’s team, reminds us that the race for efficiency in solar cell research is certainly not just an academic show. “When producing solar-powered electricity, only half of the costs are down to the solar module itself. The other half are incurred for the infrastructure: inverters, cables, carriers for the cells, engineering costs and installation. These ancillary costs are reduced when the solar cells become more efficient and can be built in smaller sizes as a result. This means that efficient solar cells are the key to low-cost renewable electricity.”

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/162772/---/l=2 Empa media release
http://www.nature.com/ncomms/2015/151118/ncomms9932/full/ncomms9932.html original paper

Rainer Klose | idw - Informationsdienst Wissenschaft

Further reports about: CIGS Empa Photovoltaics Tandem electricity mass production photons processes soccer solar cells solar energy

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>