Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Taking the Juice for Granted

Barring the occasional thunderstorm, most Americans take the electric current behind their power buttons for granted, and assume the power will be there when they’re ready to juice an appliance or favorite tech toy. Little do most know, the strain on our electric grid – which has led to rolling brownouts and the massive 2003 blackout that left 40 million people across the Northeast in the dark – will only intensify in coming years.

According to the Department of Energy, the annual cost of power outages is approximately $80 billion. Now add to conventional challenges those risks posed by terrorists intent on crippling our economy. Suddenly, the aim of electrical engineers to develop a technology to keep the country’s electrical grid online (and recover faster) really begins to resonate.

The Science and Technology Directorate (S&T) of the U.S. Department of Homeland Security is currently funding a promising solution – a superconductor cable that would link electrical substations and allow the sharing of excess capacity during emergencies. This generally is not done now, and so a flexibility like this strengthens the resiliency of the overall grid, reducing the likelihood of major power failures. This is S&T’s Resilient Electric Grid project, and the superconducting cable is called an inherently fault current limiting (IFCL) superconductor cable.

Engineers are putting decades of existing electrical research (by industry electricity leaders from American Superconductor, Southwire, and Consolidated Edison) into practice. S&T managers and scientists recently participated in a successful test of the new superconducting technology at the Oak Ridge National Laboratory in Tennessee, as they eye the aging rats’ nest of power cabling under the crowded streets of New York City.

The benefits are simple but profound: these cables can deliver more power, prevent power failures, and take up less physical space. A single superconductor cable can replace 12 copper cable bundles, freeing up more space underground for other utility needs such as water, natural gas, or phone service. The technology is capable of carrying 10 times as much power as copper wires of the same size, while also being able to adapt automatically to power surges and disruptions from lightning strikes, heat waves, and traffic accidents, even sabotage.

“The IFCL superconducting cable being tested could well revolutionize power distribution to the country’s critical infrastructure,” said Dr. Roger McGinnis, Director of the Homeland Security Advanced Research Project Agency at S&T. “Eventually, these technologies will help incorporate localized clean, green electricity generation into the power grid.”

As for the science, the cables work by transmitting electricity with near zero resistance at higher temperatures than usual. “High” is a relative term among superconductors. The cables conduct electricity at a chill -320°F instead of an icy -460°F for traditional superconductor cables.

Holding and conducting energy better than traditional copper means these cables take up a fraction of the space. Manhattan’s electrical workers may be able to eventually clear out the subterranean congestion beneath Wall Street that amazingly, looks much the same today as it did a century ago.

Since the cables themselves better prevent extremely high currents from cascading through the system, they will help eliminate the power surges that can permanently damage electrical equipment, similar to a breaker switch in a home, explained McGinnis. The cable switches off during a surge or failure, but automatically resets when conditions return to normal.

For some context, electrical substations take electricity delivered over transmission and distribution lines and lower the voltage so it can be used by homes and businesses. Even if power is lost to an individual substation, by creating multiple, redundant paths for the electric current, the cables allow quick power restoration to all the surrounding power loads. Ultimately, these cables may allow substations that had been intentionally isolated from one another in the past, for fear of cascading failures, to be interconnected in order to share power and assets.

Cutting-edge high temperature superconducting cables have been successfully tested in laboratories, and can be found in a handful of demonstration projects around the country, but they remain an emerging technology. S&T is interested in advancing the technology so that it can be used nationwide, and is pursuing an opportunity to connect two Con Edison Manhattan substations with the cable.

The Department hopes to enable the Department of Energy and various utility companies around the country to replace more than 2,000 circuit miles of power cables in U.S. cities with resilient, safe, and green IFCL cables.

John.Verrico | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>