Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the Juice for Granted

27.08.2009
Barring the occasional thunderstorm, most Americans take the electric current behind their power buttons for granted, and assume the power will be there when they’re ready to juice an appliance or favorite tech toy. Little do most know, the strain on our electric grid – which has led to rolling brownouts and the massive 2003 blackout that left 40 million people across the Northeast in the dark – will only intensify in coming years.

According to the Department of Energy, the annual cost of power outages is approximately $80 billion. Now add to conventional challenges those risks posed by terrorists intent on crippling our economy. Suddenly, the aim of electrical engineers to develop a technology to keep the country’s electrical grid online (and recover faster) really begins to resonate.

The Science and Technology Directorate (S&T) of the U.S. Department of Homeland Security is currently funding a promising solution – a superconductor cable that would link electrical substations and allow the sharing of excess capacity during emergencies. This generally is not done now, and so a flexibility like this strengthens the resiliency of the overall grid, reducing the likelihood of major power failures. This is S&T’s Resilient Electric Grid project, and the superconducting cable is called an inherently fault current limiting (IFCL) superconductor cable.

Engineers are putting decades of existing electrical research (by industry electricity leaders from American Superconductor, Southwire, and Consolidated Edison) into practice. S&T managers and scientists recently participated in a successful test of the new superconducting technology at the Oak Ridge National Laboratory in Tennessee, as they eye the aging rats’ nest of power cabling under the crowded streets of New York City.

The benefits are simple but profound: these cables can deliver more power, prevent power failures, and take up less physical space. A single superconductor cable can replace 12 copper cable bundles, freeing up more space underground for other utility needs such as water, natural gas, or phone service. The technology is capable of carrying 10 times as much power as copper wires of the same size, while also being able to adapt automatically to power surges and disruptions from lightning strikes, heat waves, and traffic accidents, even sabotage.

“The IFCL superconducting cable being tested could well revolutionize power distribution to the country’s critical infrastructure,” said Dr. Roger McGinnis, Director of the Homeland Security Advanced Research Project Agency at S&T. “Eventually, these technologies will help incorporate localized clean, green electricity generation into the power grid.”

As for the science, the cables work by transmitting electricity with near zero resistance at higher temperatures than usual. “High” is a relative term among superconductors. The cables conduct electricity at a chill -320°F instead of an icy -460°F for traditional superconductor cables.

Holding and conducting energy better than traditional copper means these cables take up a fraction of the space. Manhattan’s electrical workers may be able to eventually clear out the subterranean congestion beneath Wall Street that amazingly, looks much the same today as it did a century ago.

Since the cables themselves better prevent extremely high currents from cascading through the system, they will help eliminate the power surges that can permanently damage electrical equipment, similar to a breaker switch in a home, explained McGinnis. The cable switches off during a surge or failure, but automatically resets when conditions return to normal.

For some context, electrical substations take electricity delivered over transmission and distribution lines and lower the voltage so it can be used by homes and businesses. Even if power is lost to an individual substation, by creating multiple, redundant paths for the electric current, the cables allow quick power restoration to all the surrounding power loads. Ultimately, these cables may allow substations that had been intentionally isolated from one another in the past, for fear of cascading failures, to be interconnected in order to share power and assets.

Cutting-edge high temperature superconducting cables have been successfully tested in laboratories, and can be found in a handful of demonstration projects around the country, but they remain an emerging technology. S&T is interested in advancing the technology so that it can be used nationwide, and is pursuing an opportunity to connect two Con Edison Manhattan substations with the cable.

The Department hopes to enable the Department of Energy and various utility companies around the country to replace more than 2,000 circuit miles of power cables in U.S. cities with resilient, safe, and green IFCL cables.

John.Verrico | Newswise Science News
Further information:
http://www.dhs.gov

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>