New system proposed to optimise combined energy use

“The objective of this project is to minimise both the costs and polluting emissions generated by energy production within isolated systems in the electric network, as well as reducing the amounts of unprovided energy (energy required by appliances and devices, but which cannot be supplied)” Rodolfo Dufo, one of the authors of the study and a researcher at the Higher Polytechnic Centre of the University of Zaragoza, told SINC.

The engineers looked at isolated installations, which are provided with electric energy from photovoltaic solar panels, aerogenerators – sometimes known as windmills – and diesel generators, which use electrochemical (normally lead acid) batteries or hydrogen (by means of electrolysers, hydrogen tanks and fuel batteries) for storage. They have also looked into the possibility of redirecting the hydrogen for external uses, such as powering a vehicle, for example. “The optimisation of all these systems is a very complex process, and classic optimisation techniques are not usually appropriate in these cases due to the high computational costs they incur,” said Dufo.

The study, published in the magazine Renewable Energy, is the first time a mathematical algorithm known as SPEA (Strength Pareto Evolutionary Algorithm) has been used for the optimal “multi-objective” designing of hybrid electric energy generation systems.

The algorithm provides an optimum range of solutions (known as ‘pareto’), from which the designer can choose the most appropriate according to the relevant budgetary conditions, acceptable levels of pollutant emissions, and the amount of unprovided energy involved. Optimisation using SPEA allows a range of possible solutions to be obtained “within a reasonably short timescale”.

This method has been used to start testing a new design of isolated energy system using exclusively renewable sources (photovoltaic, wind, hydrogen and batteries), based at the Foundation for the Development of New Hydrogen Technologies’ facilities in the Walqa Technology Park in Huesca, Aragon. The device is already operational, but the researchers are currently working on data collection in order to be able to obtain results to ensure the system’s optimal configuration.

“Given the current energy crisis and the threat of climate change, isolated electrical network systems such as this are going to become ever more important, since they can simultaneously optimise costs, pollutant emissions and unprovided energy”, said the engineer.

Media Contact

SINC Team alfa

More Information:

http://www.plataformasinc.es

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors