Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system proposed to optimise combined energy use

14.11.2008
Engineers from the University of Zaragoza have developed an algorithm that can optimise hybrid electricity generation systems through combined use of renewable energies, such as photovoltaic and wind power, and non-renewables, such as diesel. Their study, published online in the magazine Renewable Energy, envisions storing the energy in batteries or hydrogen tanks.

“The objective of this project is to minimise both the costs and polluting emissions generated by energy production within isolated systems in the electric network, as well as reducing the amounts of unprovided energy (energy required by appliances and devices, but which cannot be supplied)” Rodolfo Dufo, one of the authors of the study and a researcher at the Higher Polytechnic Centre of the University of Zaragoza, told SINC.

The engineers looked at isolated installations, which are provided with electric energy from photovoltaic solar panels, aerogenerators – sometimes known as windmills – and diesel generators, which use electrochemical (normally lead acid) batteries or hydrogen (by means of electrolysers, hydrogen tanks and fuel batteries) for storage. They have also looked into the possibility of redirecting the hydrogen for external uses, such as powering a vehicle, for example. “The optimisation of all these systems is a very complex process, and classic optimisation techniques are not usually appropriate in these cases due to the high computational costs they incur,” said Dufo.

The study, published in the magazine Renewable Energy, is the first time a mathematical algorithm known as SPEA (Strength Pareto Evolutionary Algorithm) has been used for the optimal “multi-objective” designing of hybrid electric energy generation systems.

The algorithm provides an optimum range of solutions (known as ‘pareto’), from which the designer can choose the most appropriate according to the relevant budgetary conditions, acceptable levels of pollutant emissions, and the amount of unprovided energy involved. Optimisation using SPEA allows a range of possible solutions to be obtained “within a reasonably short timescale”.

This method has been used to start testing a new design of isolated energy system using exclusively renewable sources (photovoltaic, wind, hydrogen and batteries), based at the Foundation for the Development of New Hydrogen Technologies’ facilities in the Walqa Technology Park in Huesca, Aragon. The device is already operational, but the researchers are currently working on data collection in order to be able to obtain results to ensure the system’s optimal configuration.

“Given the current energy crisis and the threat of climate change, isolated electrical network systems such as this are going to become ever more important, since they can simultaneously optimise costs, pollutant emissions and unprovided energy”, said the engineer.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>