Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New System Developed to Test and Evaluate High-Energy Laser Weapons

18.08.2010
Technologies for using laser energy to destroy threats at a distance have been in development for many years. Today, these technologies -- known as directed energy weapons -- are maturing to the point of becoming deployable.

High-energy lasers -- one type of directed energy weapon -- can be mounted on aircraft to deliver a large amount of energy to a far-away target at the speed of light, resulting in structural and incendiary damage. These lasers can be powerful enough to destroy cruise missiles, artillery projectiles, rockets and mortar rounds.

Before these weapons can be used in the field, the lasers must be tested and evaluated at test ranges. The power and energy distribution of the high-energy laser beam must be accurately measured on a target board, with high spatial and temporal resolution.

Researchers at the Georgia Tech Research Institute (GTRI) have developed a system to measure a laser’s power and spatial energy distribution simultaneously by directing the laser beam onto a glass target board they designed. Ultimately, the reusable target board and beam diagnostic system will help accelerate the development of such high-energy laser systems and reduce the time required to make them operational for national security purposes.

“The high-energy laser beam delivers its energy to a small spot on the target -- only a couple inches in diameter -- but the intensity is strong enough to melt steel,” said GTRI senior research scientist David Roberts. “Our goal was to develop a method for determining how many watts of energy were hitting that area and how the energy distribution changed over time so that the lasers can be optimized.”

GTRI teamed with Leon Glebov of Orlando-based OptiGrate to design and fabricate a target board that could survive high-energy laser irradiation without changing its properties or significantly affecting the beam. The researchers selected OptiGrate’s handmade photo-thermo-refractive glass -- a sodium-zinc-aluminum-silicate glass doped with silver, cerium and fluorine -- for the target board.

“This glass is unique in that it is transparent, but also photosensitive like film so you can record holograms and other optical structures in the glass, then ‘develop’ them in a furnace,” explained Roberts.

The researchers tweaked the optical characteristics of the glass so that the board would resist degradation and laser damage. OptiGrate also had to create a new mold to produce four-inch by four-inch pieces of the glass -- a size four times larger than OptiGrate had ever made before.

During testing, the four-inch-square target board is secured between a test target and a high-energy laser, and the beam irradiance profile on the board is imaged by a remote camera. The images are then analyzed to provide a contour map showing the power density -- watts per square inch -- at every location where the beam hit the target.

“We can also simultaneously collect power measurements as a function of time with no extra equipment,” noted Roberts. “Previously, measuring the total energy delivered by the laser required a ball calorimeter and temperature measurements had to be collected as the laser heated the interior of the ball. Now we can measure the total energy along with the total power and power density anywhere inside the beam more than one hundred times per second.”

GTRI’s prototype target boards and a high-energy laser beam profiling system that uses those boards were delivered to Kirtland Air Force Base’s Laser Effects Test Facility in May. The researchers successfully demonstrated them using the facility’s 50-kilowatt fiber laser and measured power densities as high as 10,000 watts per square centimeter without damaging the beam profiler.

Scaling the system up to larger target board sizes is possible, according to Roberts.

GTRI research engineer Tim Norwood, GTRI research scientist Nathan Meraz and Georgia Tech mechanical engineering undergraduate student Matthew Vickers also contributed to this research.

This project is supported by U.S. Army Award No. N61339-06-C-0046. The content is solely the responsibility of the principal investigator and does not necessarily represent the official view of the U.S. Army

Abby Vogel Robinson | Newswise Science News
Further information:
http://www.gatech.edu

Further reports about: GTRI High-Energy Fuel OptiGrate laser beam laser system weapons

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>