Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic polymers enable cheap, efficient, durable alkaline fuel cells

08.08.2013
A new cost-effective polymer membrane can decrease the cost of alkaline batteries and fuel cells by allowing the replacement of expensive platinum catalysts without sacrificing important aspects of performance, according to Penn State researchers.

"We have tried to break this paradigm of tradeoffs in materials (by improving) both the stability and the conductivity of this membrane at the same time, and that is what we were able to do with this unique polymeric materials design," said Michael Hickner, associate professor of materials science and engineering.


This is an example membrane -- a cost-efficient and durable alternative for fuel cells consisting of two electrodes with a clear membrane sandwiched between them.

Credit: Patrick Mansell

In solid-state alkaline fuel cells, anion exchange membranes conduct negative charges between the device's cathode and anode -- the negative and positive connections of the cell -- to create useable electric power. Most fuel cells currently use membranes that require platinum-based catalysts that are effective but expensive.

Hickner's new polymer is a unique anion exchange membrane -- a new type of fuel cell and battery membrane -- that allows the use of much more cost-efficient non-precious metal catalysts and does not compromise either durability or efficiency like previous anion exchange membranes.

"What we're really doing here is providing alternatives, possible choices, new technology so that people who want to commercialize fuel cells can now choose between the old paradigm and new possibilities with anion exchange membranes," Hickner said.

Creating this alternative took some intuition and good fortune. In work spearheaded by Nanwen Li, a postdoctoral researcher in materials science and engineering, Hickner's team created several variations of the membrane, each with slightly different chemical compositions. They then ran each variation under simulated conditions to predict which would be optimal in an actual fuel cell. The researchers published their results in a recent issue of the Journal of the American Chemical Society.

Based on these initial tests, the group predicted that the membranes with long 16-carbon structures in their chemical makeup would provide the best efficiency and durability, as measured respectively by conductivity and long-term stability.

Chao-Yang Wang, William E. Diefenderfer Chair of Mechanical Engineering, and his team then tested each possibility in an operating fuel cell device. Yongjun Leng, a research associate in mechanical and nuclear engineering, measured the fuel cell's output and lifetime for each material variation.

Despite predictions, the membranes containing shorter 6-carbon structures proved to be much more durable and efficient after 60 hours of continuous operation.

"We were somewhat surprised…that what we thought was the best material in our lab testing wasn't necessarily the best material in the cell when it was evaluated over time," said Hickner, who added that researchers are still trying to understand why the 6-carbon variation has better long-term durability than the 16-carbon sample in the fuel cell by studying the operating conditions of the cell in detail.

Because the successful membrane was so much more effective than the initial lab studies predicted, researchers are now interested in accounting for the interactions that the membranes experienced while inside the cell.

"We have the fuel cell output -- so we have the fuel cell efficiency, the fuel cell life time -- but we don't have the molecular scale information in the fuel cell," Hickner said. "That's the next step, trying to figure out how these polymers are working in the fuel cell on a detailed level."

The Advanced Research Projects Agency-Energy at the U.S. Department of Energy, funded this project in collaboration with Proton OnSite, a leading membrane electrolyzer company based in Connecticut.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

LZH showcases laser material processing of tomorrow at the LASYS 2018

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>