Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SWiFT Commissioned to Study Wind Farm Optimization

11.07.2013
The U.S. Department of Energy (DOE), Sandia National Laboratories and Texas Tech University commissioned the DOE/Sandia Scaled Wind Farm Technology (SWiFT) facility today at the Reese Technology Center in Lubbock, Texas. The SWiFT is the first public facility of its kind to use multiple wind turbines to measure how wind turbines interact with one another in a wind farm.

The event featured speakers from the DOE’s Wind Program, Vestas Wind Systems, Sandia and Texas Tech.


Photo by Lloyd Wilson

A turbine at the newly-commissioned SWiFT facility

“The Energy Department’s wind testing facilities, including the Scaled Wind Farm Technology site in Texas, support the continued growth of our nation’s clean energy economy while helping to speed the deployment of next generation energy technologies and bring more clean, affordable renewable power to American homes and businesses,” said Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson.

Jon White of Sandia’s Wind Energy Technologies Department, technical lead for the project, said SWiFT is the first moderate-scale facility — allowing up to 10 wind turbines — specifically designed to investigate, test and develop technology for wind plants.

“Some estimates show that 10 to 40 percent of wind energy production and revenue is lost due to complex wind plant interaction,” said White.

White said the SWiFT facility allows for rapid, cost-efficient testing and development of transformative wind energy technology, with specific emphasis on improving wind plant performance. The facility’s advanced testing and monitoring will help researchers evaluate how larger wind farms can become more productive.

SWiFT will host both open-source and proprietary research as the result of a partnership among Sandia, Vestas, Texas Tech’s National Wind Institute at Reese Technology Center and Group NIRE, a renewable energy development company.

White said the three-year process to develop the facility has been rewarding and challenging.

“It has been a phenomenal experience to work with a diverse team to complete the often under-appreciated process of turbine construction. We also had a 1980s-era, smaller turbine rebuilt to perform like a much larger machine,” White said.

“The project was a complete green-field construction so there was tremendous complexity in scheduling and managing all of the agreements and contracts to access to the facility, verify there wouldn’t be an adverse environmental impact, procure the equipment, and contract numerous specialized labor resources. We succeeded primarily because we have a dedicated and competent team and a steadfast DOE customer,” White said.

Researchers have begun planning the site’s first research projects.

White said the two primary research projects for the next year will be testing and evaluating Sandia’s new National Rotor Testbed Project and collecting baseline data for turbine-turbine interaction that can be used by the international community to improve wind plant performance.

The National Rotor Testbed Project will provide a public, open-source complete rotor design that the wind energy community can work on collaboratively to bring the best technology to market as rapidly and cost-efficiently as possible, White said.

Funding for the work comes from the DOE’s Office of Energy Efficiency and Renewable Energy.

View the Media kit, see a time-lapse video of construction, and visit the Wind Energy Flickr set.

For more information on SWiFT, see previous news releases or visit the SWIFT website.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Stephanie Holinka | Newswise
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>