Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swansea Engineering team pioneer Smart Electricity Meter

02.10.2008
The Power Electronics team from Swansea University’s School of Engineering has developed one of the world’s most advanced Smart Electricity Meters.

And the team is now supplying nearly 1.5MWh per year of free ‘Green electricity’ to the University, helping to reduce its carbon footprint.

The team, based within the Electronic Systems Design Centre, implemented their prototype Smart Meter to highlight the potential of electricity metering technologies in the near future.

The Smart Meter is to be the focal point for a consumer’s personal energy queries. It monitors their energy consumption, giving information not just through a traditional power reading, but in a user-friendly way by displaying animated graphics of money on a large clear screen on the meter.

It also goes one step further than most other potential Smart Meters in that it monitors individual power circuits in the home, including upstairs lighting, downstairs lighting and kitchen sockets.

The team believes there is also the possibility to monitor individual appliances when the technology is adopted further.

The presentation of consumption information is complemented by the ability to show power generated from micro-renewable technologies in a ‘plug and play’ manner, similar to the wind turbine currently commercially available, and generic solar panels.

This is an effort to provide a simple, easy to set up method for people with no expertise in Power Electronics.

The Smart Meter is linked to a number of solar panels on the roof of the University’s Engineering building through a power converter.

The power delivered from the solar panels is monitored within the meter to allow the ‘Green energy’ produced to be reviewed in an easy to understand way.

This allows clear indications whether the renewable technology has been a beneficial purchase and the likely financial performance from the initial investment.

The meter also has communication abilities, allowing the readings of power consumption and generation to be instantly available to the supplier and to the consumer via web pages, wireless in-home displays, or potentially even a television channel.

Richard Lewis, a leading researcher on the Swansea Smart Meter team, said: “The time for complacency is over! Swansea University, through its team and initiatives, is leading the effort in making energy awareness a top priority and is working to provide the tools to do it.

“We are currently looking to create a fully functional prototype from the current demonstration unit and plan to begin residential trials within the next 18 months.”

Interest in Smart Metering technologies has been sparked by a number of television commercials highlighting the availability of Smart Meters to business, but the residential sector still has some way to go.

Small scale trials are still underway and the adoption of Smart Metering in the residential sector could be a few years away.

The Swansea team are looking to be the UK pioneers, by offering metering technologies to those who wish to be early adopters.

Dr Petar Igic, who is leading the Energy and Power Electronics research within the University’s School of Engineering, said: “The project is one of a number of Welsh Assembly Government Knowledge Exploitation Fund research projects being undertaken in Wales and facilitated by the Welsh Energy Research Centre (WERC) to ensure Wales is at the forefront of current energy technologies.

“Smart Electricity Metering is a key part of the Energy Efficiency research theme, since making more efficient and more responsible use of the electric power generated is as important as finding renewable energy sources.”

Mark Durdin, Energy and Environmental Engineer in Estates Services at Swansea University, added: “This is an important development in metering. Each one of us needs to do our bit to reduce consumption and costs, but we can only do this if we know what is consuming the energy.”

Bethan Evans | alfa
Further information:
http://www.swansea.ac.uk/engineering

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>