Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface Modification of TiO2 for Photocatalytic Degradation of Hazardous Pollutants Under Ordinary Visible Light

22.04.2014

UiTM researchers have developed a modified photocatalyst which is economical and effective at transforming organic pollutants into harmless end products.

Photocatalytic degradation is one of the highly effective applications in transforming organic pollutants to harmless end products at ambient conditions using light and a photocatalyst.

Titanium dioxide (TiO2) is the most commonly used photocatalyst in many environmental applications but it can be used only under UV light owing to its high band gap energy (3.2 eV). UV light being energy intensive, it makes the photocatalytic degradation process very expensive.

In solar light spectrum, UV light exists only within 3-5% compared to visible light (45%). Therefore, for practical application, it is highly desirable to develop TiO2 photocatalyst which can effectively degrade the pollutants under visible light irradiation.

Various techniques proposed in the literature to extend the absorption wavelength from UV to visible light region include semiconductor coupling, metal doping, dye sensitising and doping with nonmetal elements.

The most feasible method to modify the structure of photocatalyst is by doping with nonmetal, since it narrows down the band gap besides being stable, inexpensive and non photo corrosive. Doping with nitrogen attracted huge attention due to its high visible light active photocatalytic efficiency. Other nonmetal elements commonly used as dopants include iodine, carbon, sulphur and boron.

Nitrogen (N) and carbon (C) were selected as dopants in this study because they both could prevent the electron-hole pair from recombination during the photodegradation (how).

We developed a modified photocatalyst which has desirable properties such as economical, environmental friendly, structural stability and high degradation rate by a simple preparation method after carefully studying the effects of dopant concentration and calcination temperature (advantages).

Application of this catalyst will ensure higher degradation rate of volatile organic compounds (carcinogenic) at lower cost leading to pollution free environment (socio economy impact).

This material will be of great help to the Petrochemical, Oil and gas industries to implement a low cost technology for the removal of organic pollutants at their premises (commercialisation potential). Elemental doping of titanium dioxide with nitrogen and carbon was investigated in this study to get the modified photocatalyst working under visible light.

Doped and codoped photocatalyst samples were synthesized by solgel method using titanium isopropoxide, ammonium nitrate and acetylacetone as precursors with the dopant concentration and calcination temperature fixed at 0.75% and 600oC respectively.

Synthesized photocatalysts were characterized by XRD, FTIR and FESEM which supported the existence of anatase phase, presence of dopants and formation of fine particles respectively.

Theoretically photocatalytic activity is affected by many factors such as phase structure, crystallinity, surface hydroxyl density and oxygen vacancies. The highest photocatalytic activity was observed for N-C-TiO2. In 3 hours, the degradation was 91.3%.

This might be attributed to combined effect of the phase structure, particle size and the component existed in the photocatalyst. Strong anatase peaks as observed in XRD represented strong interaction of all the doped elements with TiO2 surfaces, which resulted in higher photocatalytic degradation.

Particle size also facilitated the photocatalytic reaction. Finer the size, higher is the photocatalytic performance which was well supported by the results from FESEM. The hydroxyl group presented in the photocatalyst as discussed in FTIR also contributed to the increased photocatalytic activity.

This novel material finds a solution to replace the use of high energy intensive UV radiation for the treatment of gaseous and aqueous pollutants with just with the ordinary domestic lamps to convert them into harmless end products (ecofriendly) thereby greatly reducing the total cost of waste management (economical).

For more information, contact
JAGANNATHAN KRISHNAN
UNIVERSITI TEKNOLOGI MARA
SELANGOR
FACULTY OF CHEMICAL ENGINEERING
jagannathann@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://www.uitm.edu.my

Further reports about: FTIR Particle Petrochemical Surface TiO2 Visible activity anatase degradation energy hydroxyl prevent temperature titanium

More articles from Power and Electrical Engineering:

nachricht On the crest of the wave: Electronics on a time scale shorter than a cycle of light
30.07.2015 | Universität Regensburg

nachricht Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes
27.07.2015 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>