Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface Modification of TiO2 for Photocatalytic Degradation of Hazardous Pollutants Under Ordinary Visible Light

22.04.2014

UiTM researchers have developed a modified photocatalyst which is economical and effective at transforming organic pollutants into harmless end products.

Photocatalytic degradation is one of the highly effective applications in transforming organic pollutants to harmless end products at ambient conditions using light and a photocatalyst.

Titanium dioxide (TiO2) is the most commonly used photocatalyst in many environmental applications but it can be used only under UV light owing to its high band gap energy (3.2 eV). UV light being energy intensive, it makes the photocatalytic degradation process very expensive.

In solar light spectrum, UV light exists only within 3-5% compared to visible light (45%). Therefore, for practical application, it is highly desirable to develop TiO2 photocatalyst which can effectively degrade the pollutants under visible light irradiation.

Various techniques proposed in the literature to extend the absorption wavelength from UV to visible light region include semiconductor coupling, metal doping, dye sensitising and doping with nonmetal elements.

The most feasible method to modify the structure of photocatalyst is by doping with nonmetal, since it narrows down the band gap besides being stable, inexpensive and non photo corrosive. Doping with nitrogen attracted huge attention due to its high visible light active photocatalytic efficiency. Other nonmetal elements commonly used as dopants include iodine, carbon, sulphur and boron.

Nitrogen (N) and carbon (C) were selected as dopants in this study because they both could prevent the electron-hole pair from recombination during the photodegradation (how).

We developed a modified photocatalyst which has desirable properties such as economical, environmental friendly, structural stability and high degradation rate by a simple preparation method after carefully studying the effects of dopant concentration and calcination temperature (advantages).

Application of this catalyst will ensure higher degradation rate of volatile organic compounds (carcinogenic) at lower cost leading to pollution free environment (socio economy impact).

This material will be of great help to the Petrochemical, Oil and gas industries to implement a low cost technology for the removal of organic pollutants at their premises (commercialisation potential). Elemental doping of titanium dioxide with nitrogen and carbon was investigated in this study to get the modified photocatalyst working under visible light.

Doped and codoped photocatalyst samples were synthesized by solgel method using titanium isopropoxide, ammonium nitrate and acetylacetone as precursors with the dopant concentration and calcination temperature fixed at 0.75% and 600oC respectively.

Synthesized photocatalysts were characterized by XRD, FTIR and FESEM which supported the existence of anatase phase, presence of dopants and formation of fine particles respectively.

Theoretically photocatalytic activity is affected by many factors such as phase structure, crystallinity, surface hydroxyl density and oxygen vacancies. The highest photocatalytic activity was observed for N-C-TiO2. In 3 hours, the degradation was 91.3%.

This might be attributed to combined effect of the phase structure, particle size and the component existed in the photocatalyst. Strong anatase peaks as observed in XRD represented strong interaction of all the doped elements with TiO2 surfaces, which resulted in higher photocatalytic degradation.

Particle size also facilitated the photocatalytic reaction. Finer the size, higher is the photocatalytic performance which was well supported by the results from FESEM. The hydroxyl group presented in the photocatalyst as discussed in FTIR also contributed to the increased photocatalytic activity.

This novel material finds a solution to replace the use of high energy intensive UV radiation for the treatment of gaseous and aqueous pollutants with just with the ordinary domestic lamps to convert them into harmless end products (ecofriendly) thereby greatly reducing the total cost of waste management (economical).

For more information, contact
JAGANNATHAN KRISHNAN
UNIVERSITI TEKNOLOGI MARA
SELANGOR
FACULTY OF CHEMICAL ENGINEERING
jagannathann@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://www.uitm.edu.my

Further reports about: FTIR Particle Petrochemical Surface TiO2 Visible activity anatase degradation energy hydroxyl prevent temperature titanium

More articles from Power and Electrical Engineering:

nachricht Mission possible: This device will self-destruct when heated
22.05.2015 | University of Illinois at Urbana-Champaign

nachricht Gamma ray camera may help with Fukushima decontamination*
21.05.2015 | Waseda University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>