Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supporting the Power Semiconductor Industry – The Wide Bandgap Semiconductor Alliance WISEA

27.03.2012
For a sustained support of research in wide energy bandgap semiconductor materials and technologies, Fraunhofer IISB in Erlangen, Germany, and LAAS-CNRS, Toulouse, France, initiated the foundation of the Wide Bandgap Semiconductor Alliance WISEA.

Including the Chair of Electron Devices of the University of Erlangen-Nuremberg, Germany, and CEMES-CNRS, Toulouse, France, the alliance covers all aspects of research and demonstrator development and makes the respective facilities available to third parties in cooperative projects.


SiC technology on the advance. Structured SiC wafer. Fraunhofer IISB

The further development of novel “green” energy sources like wind or solar energy parks and a significant reduction of the world-wide energy consumption are of utmost importance for the reduction of CO2 emission. This includes the transition from conventional gasoline engines to electric or hybrid electric vehicles in automotive engineering. For all applications involving the transport of energy from power plants to the user, power management in cars, and conversion of energy, power electronic devices play an essential role.

Power devices based on materials with a wide energy bandgap such as silicon carbide and gallium nitride show the capability to overcome the material-dependent limits of today's power electronic devices based on silicon. Thereby, they will contribute essentially to the minimization of power dissipation.

In order to facilitate the development and take-up of this technology, and based on an existing cooperation formed within the Programme Inter Carnot Fraunhofer (PICF 2010), the Fraunhofer Institute for Integrated Systems and Device Technology IISB and the CNRS institute Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) together with their associates, the Chair of Electron Devices of the University Erlangen-Nuremberg (LEB) and the CNRS institute Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES), formed the Wide Bandgap Semicon-ductor Alliance (WISEA). Together, the partners are able to offer a competence chain in wide bandgap semiconductor processing covering all aspects of research and demonstrator development.

WISEA has access to a 1000 m2 class-10 cleanroom in Erlangen, Germany, and to a 1500 m2 class-100 clean room in Toulouse, France, dedicated to micro and nanofabrication. In particular for wide bandgap semiconductor materials and devices, specialized equipment is available to cover processing from epitaxy to metallization and packaging, including the fabrication of test structures and devices. Based on its experienced staff and state-of-the-art facilities, the alliance also offers advanced electrical and physico-chemical characterization as well as simulation and modeling from atomistic processes to the device level.

The WISEA facilities are available for contract research as well as for third-party-funded collaborative projects.

WISEA acknowledges the initial support by the Federal Ministry of Education and Research (BMBF) of Germany and the Agence Nationale de la Recherche (ANR) of France within the Programme Inter Carnot Fraunhofer (PICF 2010) project MobiSiC.

WISEA is supported via the project MobiSiC by Federal Ministry of Education and Research (BMBF), The French National Research Agency (ANR), and the Carnot Institutes Network (Association Instituts Carnot).

Contact:
Dr. Anton J. Bauer
Fraunhofer Institute for Integrated Systems and Device Technology IISB
Schottkystrasse 10
91058 Erlangen, Germany
Tel. +49 9131 761 - 308
Fax +49 9131 761 - 360
anton.bauer@iisb.fraunhofer.de
www.iisb.fraunhofer.de
Dr. Fuccio Cristiano
LAAS-CNRS
7, avenue du Colonel Roche
31077 Toulouse Cedex 4, France
Tel. +33 5.61.33.62.54
Fax +33 5.61.33.62.08
fuccio@laas.fr
www.laas.fr
Fraunhofer IISB
The Institute for Integrated Systems and Device Technology IISB is one of the 59 institutes of the Fraunhofer-Gesellschaft. It conducts applied research and development in the fields of micro and nanoelectronics, power electronics, and mechatronics.
For the development of technology, equipment, and materials for nanoelectronics and its work on power electronic systems for energy efficiency, hybrid and electric cars the institute is internationally acknowledged.
A staff of 170 works in contract research for industry and public authorities. In addition to its headquarters in Erlangen, the IISB has two branch labs in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander Universi-ty Erlangen-Nuremberg.

LAAS-CEMES/CNRS
The French national research centre for scientific research (CNRS), is a public research organization whose mission is to produce knowledge and make it available to society. LAAS and CEMES, both located in Toulouse, are two among its over 1000 research units spread throughout the country.
LAAS (Laboratoire d'Analyse et d'Architecture des Systèmes) gathers ~180 staff scientists (from both CNRS and Université Paul Sabatier, Toulouse), 90 engineers and 150 PhD students and post-docs working on five main areas: Microelectronics, Automatic Control, Computer Science, Production Con-trol, and Robotics. The laboratory clean room facility (1500 m2) includes conventional equipment for microelectronic and microsystems fabrication (e-beam pattern generator, mask patterning equipment, 200 keV ion implanter, RIE and CVD systems…).

CEMES (Centre d'Elaboration de Matériaux et d'Etudes Structurales) is devoted to the synthesis and structural characterisation of novel materials of small dimensions. About 70 staff scientists, physicists, materials scientists and chemists work together with 50 engineers and 30 PhD students and Postdocs in the field of materials sciences. These materials range from single molecules for electronic transfer to semiconductors, magnetic materials, ceramics, etc… to light alloys for aeronautics.

Dr. Anton J. Bauer | Fraunhofer IISB
Further information:
http://www.iisb.fraunhofer.de/mobisic

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>