Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supporting the Power Semiconductor Industry – The Wide Bandgap Semiconductor Alliance WISEA

27.03.2012
For a sustained support of research in wide energy bandgap semiconductor materials and technologies, Fraunhofer IISB in Erlangen, Germany, and LAAS-CNRS, Toulouse, France, initiated the foundation of the Wide Bandgap Semiconductor Alliance WISEA.

Including the Chair of Electron Devices of the University of Erlangen-Nuremberg, Germany, and CEMES-CNRS, Toulouse, France, the alliance covers all aspects of research and demonstrator development and makes the respective facilities available to third parties in cooperative projects.


SiC technology on the advance. Structured SiC wafer. Fraunhofer IISB

The further development of novel “green” energy sources like wind or solar energy parks and a significant reduction of the world-wide energy consumption are of utmost importance for the reduction of CO2 emission. This includes the transition from conventional gasoline engines to electric or hybrid electric vehicles in automotive engineering. For all applications involving the transport of energy from power plants to the user, power management in cars, and conversion of energy, power electronic devices play an essential role.

Power devices based on materials with a wide energy bandgap such as silicon carbide and gallium nitride show the capability to overcome the material-dependent limits of today's power electronic devices based on silicon. Thereby, they will contribute essentially to the minimization of power dissipation.

In order to facilitate the development and take-up of this technology, and based on an existing cooperation formed within the Programme Inter Carnot Fraunhofer (PICF 2010), the Fraunhofer Institute for Integrated Systems and Device Technology IISB and the CNRS institute Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) together with their associates, the Chair of Electron Devices of the University Erlangen-Nuremberg (LEB) and the CNRS institute Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES), formed the Wide Bandgap Semicon-ductor Alliance (WISEA). Together, the partners are able to offer a competence chain in wide bandgap semiconductor processing covering all aspects of research and demonstrator development.

WISEA has access to a 1000 m2 class-10 cleanroom in Erlangen, Germany, and to a 1500 m2 class-100 clean room in Toulouse, France, dedicated to micro and nanofabrication. In particular for wide bandgap semiconductor materials and devices, specialized equipment is available to cover processing from epitaxy to metallization and packaging, including the fabrication of test structures and devices. Based on its experienced staff and state-of-the-art facilities, the alliance also offers advanced electrical and physico-chemical characterization as well as simulation and modeling from atomistic processes to the device level.

The WISEA facilities are available for contract research as well as for third-party-funded collaborative projects.

WISEA acknowledges the initial support by the Federal Ministry of Education and Research (BMBF) of Germany and the Agence Nationale de la Recherche (ANR) of France within the Programme Inter Carnot Fraunhofer (PICF 2010) project MobiSiC.

WISEA is supported via the project MobiSiC by Federal Ministry of Education and Research (BMBF), The French National Research Agency (ANR), and the Carnot Institutes Network (Association Instituts Carnot).

Contact:
Dr. Anton J. Bauer
Fraunhofer Institute for Integrated Systems and Device Technology IISB
Schottkystrasse 10
91058 Erlangen, Germany
Tel. +49 9131 761 - 308
Fax +49 9131 761 - 360
anton.bauer@iisb.fraunhofer.de
www.iisb.fraunhofer.de
Dr. Fuccio Cristiano
LAAS-CNRS
7, avenue du Colonel Roche
31077 Toulouse Cedex 4, France
Tel. +33 5.61.33.62.54
Fax +33 5.61.33.62.08
fuccio@laas.fr
www.laas.fr
Fraunhofer IISB
The Institute for Integrated Systems and Device Technology IISB is one of the 59 institutes of the Fraunhofer-Gesellschaft. It conducts applied research and development in the fields of micro and nanoelectronics, power electronics, and mechatronics.
For the development of technology, equipment, and materials for nanoelectronics and its work on power electronic systems for energy efficiency, hybrid and electric cars the institute is internationally acknowledged.
A staff of 170 works in contract research for industry and public authorities. In addition to its headquarters in Erlangen, the IISB has two branch labs in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander Universi-ty Erlangen-Nuremberg.

LAAS-CEMES/CNRS
The French national research centre for scientific research (CNRS), is a public research organization whose mission is to produce knowledge and make it available to society. LAAS and CEMES, both located in Toulouse, are two among its over 1000 research units spread throughout the country.
LAAS (Laboratoire d'Analyse et d'Architecture des Systèmes) gathers ~180 staff scientists (from both CNRS and Université Paul Sabatier, Toulouse), 90 engineers and 150 PhD students and post-docs working on five main areas: Microelectronics, Automatic Control, Computer Science, Production Con-trol, and Robotics. The laboratory clean room facility (1500 m2) includes conventional equipment for microelectronic and microsystems fabrication (e-beam pattern generator, mask patterning equipment, 200 keV ion implanter, RIE and CVD systems…).

CEMES (Centre d'Elaboration de Matériaux et d'Etudes Structurales) is devoted to the synthesis and structural characterisation of novel materials of small dimensions. About 70 staff scientists, physicists, materials scientists and chemists work together with 50 engineers and 30 PhD students and Postdocs in the field of materials sciences. These materials range from single molecules for electronic transfer to semiconductors, magnetic materials, ceramics, etc… to light alloys for aeronautics.

Dr. Anton J. Bauer | Fraunhofer IISB
Further information:
http://www.iisb.fraunhofer.de/mobisic

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>