Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superlens

25.06.2009
A team of researchers at the University of Illinois has created the world’s first acoustic “superlens,” an innovation that could have practical implications for high-resolution ultrasound imaging, non-destructive structural testing of buildings and bridges, and novel underwater stealth technology.

The team, led by Nicholas X. Fang, a professor of mechanical science and engineering at Illinois, successfully focused ultrasound waves through a flat metamaterial lens on a spot roughly half the width of a wavelength at 60.5 kHz using a network of fluid-filled Helmholtz resonators.

According to the results, published in the May 15 issue of the journal Physical Review Letters, the acoustic system is analogous to an inductor-capacitor circuit. The transmission channels act as a series of inductors, and the Helmholtz resonators, which Fang describes as cavities that house resonating waves and oscillate at certain sonic frequencies almost as a musical instrument would, act as capacitors.

Fang said acoustic imaging is somewhat analogous to optical imaging in that bending sound is similar to bending light. But compared with optical and X-ray imaging, creating an image from sound is “a lot safer, which is why we use sonography on pregnant women,” said Shu Zhang, a U. of I. graduate student who along with Leilei Yin, a microscopist at the Beckman Institute, are co-authors of the paper.

Although safer, the resultant image resolution of acoustic imaging is still not as sharp or accurate as conventional optical imaging.

“With acoustic imaging, you can’t see anything that’s smaller than a few millimeters,” said Fang, who also is a researcher at the institute. “The image resolution is getting better and better, but it’s still not as convenient or accurate as optical imaging.”

The best tool for tumor detection is still the optical imaging, but exposure to certain types of electromagnetic radiation such as X-rays also has its health risks, Fang noted.

“If we wish to detect or screen early stage tumors in the human body using acoustic imaging, then better resolution and higher contrast are equally important,” he said. “In the body, tumors are often surrounded by hard tissues with high contrast, so you can’t see them clearly, and acoustic imaging may provide more details than optical imaging methods.”

Fang said that the application of acoustic imaging technology goes beyond medicine. Eventually, the technology could lead to “a completely new suite of data that previously wasn’t available to us using just natural materials,” he said.

In the field of non-destructive testing, the structural soundness of a building or a bridge could be checked for hairline cracks with acoustic imaging, as could other deeply embedded flaws invisible to the eye or unable to be detected by optical imaging.

“Acoustic imaging is a different means of detecting and probing things, beyond optical imaging,” Fang said.

Fang said acoustic imaging could also lead to better underwater stealth technology, possibly even an “acoustic cloak” that would act as camouflage for submarines. “Right now, the goal is to bring this ‘lab science’ out of the lab and create a practical device or system that will allow us to use acoustic imaging in a variety of situations,” Fang said.

Funding for this research was provided by the Defense Advanced Research Projects Agency, the central research and development agency for the U.S. Department of Defense.

Phil Ciciora | University of Illinois
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>