Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercharging silicon batteries

07.09.2017

OIST scientists designed a novel silicon-based anode to provide lithium batteries with increased power and better stability

As the world shifts towards renewable energy, moving on from fossil fuels, but at the same time relying on ever more energy-gobbling devices, there is a fast-growing need for larger high-performance batteries. Lithium-ion batteries (LIBs) power most of our portable electronics, but they are flammable and can even explode, as it happened to a recent model of smartphone. To prevent such accidents, the current solution is to encapsulate the anode - which is the negative (-) electrode of the battery, opposite to the cathode (+) - into a graphite frame, thus insulating the lithium ions. However, such casing is limited to a small scale to avoid physical collapse, therefore restraining the capacity - the amount of energy you can store - of the battery.


The porosity of the nanostructured Tantalum (in black) enables the formation of silicon channels (in blue) allowing lithium ions to travel faster within the battery. The rigidity of the tantalum scaffold also limits the expansion of the silicon and preserve structural integrity.

Credit: Okinawa Institute of Science and Technology Graduate University Nanoparticles by Design Unit

Looking for better materials, silicon offers great advantages over carbon graphite for lithium batteries in terms of capacity. Six atoms of carbon are required to bind a single atom of lithium, but an atom of silicon can bind four atoms of lithium at the same time, multiplying the battery capacity by more than 10-fold. However, being able to capture that many lithium ions means that the volume of the anode swells by 300% to 400%, leading to fracturing and loss of structural integrity. To overcome this issue, OIST researchers have now reported in Advanced Science the design of an anode built on nanostructured layers of silicon - not unlike a multi-layered cake - to preserve the advantages of silicon while preventing physical collapse.

This new battery is also aiming to improve power, which is the ability to charge and deliver energy over time.

"The goal in battery technology right now is to increase charging speed and power output," explained Dr. Marta Haro Remon, first author of the study. "While it is fine to charge your phone or your laptop over a long period of time, you would not wait by your electric car for three hours at the charging station."

And when it comes to providing energy, you would want your car to start off quickly at a traffic light or a stop sign, requiring a high spike in power, rather than slowly creeping forward. A well-thought design of a silicone-based anode might be a solution and answer these expectations.

The idea behind the new anode in the Nanoparticles by Design Unit at the Okinawa Institute of Science and Technology Graduate University is the ability to precisely control the synthesis and the corresponding physical structure of the nanoparticles. Layers of unstructured silicon films are deposited alternatively with tantalum metal nanoparticle scaffolds, resulting in the silicon being sandwiched in a tantalum frame.

"We used a technique called Cluster Beam Deposition," continued Dr. Haro. "The required materials are directly deposited on the surface with great control. This is a purely physical method, there are no need for chemicals, catalysts or other binders."

"We used a technique called Cluster Beam Deposition," continued Dr. Haro. "The required materials are directly deposited on the surface with great control. This is a purely physical method, there are no need for chemicals, catalysts or other binders."

The outcome of this research, led by Prof. Sowwan at OIST, is an anode with higher power but restrained swelling, and excellent cyclability - the amount of cycles in which a battery can be charged and discharged before losing efficiency. By looking closer into the nanostructured layers of silicon, the scientists realized the silicon shows important porosity with a grain-like structure in which lithium ions could travel at higher speeds compared to unstructured, amorphous silicon, explaining the increase in power. At the same time the presence of silicon channels along the Ta nanoparticle scaffolds allows the lithium ions to diffuse in the entire structure. On the other hand, the tantalum metal casing, while restraining swelling and improving structural integrity, also limited the overall capacity - for now.

However, this design is currently only at the stage of proof-of-concept, opening the door to numerous opportunities to improve capacity along with the increased power.

"It is a very open synthesis approach, there are many parameters you can play around," commented Dr. Haro. "For example, we want to optimize the numbers of layers, their thickness, and replace tantalum metal with other materials."

With this technique paving the way, it might very well be that the solution for future batteries, forecast to be omnipresent in our lives, will be found in nanoparticles.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

Further reports about: battery ions lithium ions structural integrity

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>