Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercharging silicon batteries

07.09.2017

OIST scientists designed a novel silicon-based anode to provide lithium batteries with increased power and better stability

As the world shifts towards renewable energy, moving on from fossil fuels, but at the same time relying on ever more energy-gobbling devices, there is a fast-growing need for larger high-performance batteries. Lithium-ion batteries (LIBs) power most of our portable electronics, but they are flammable and can even explode, as it happened to a recent model of smartphone. To prevent such accidents, the current solution is to encapsulate the anode - which is the negative (-) electrode of the battery, opposite to the cathode (+) - into a graphite frame, thus insulating the lithium ions. However, such casing is limited to a small scale to avoid physical collapse, therefore restraining the capacity - the amount of energy you can store - of the battery.


The porosity of the nanostructured Tantalum (in black) enables the formation of silicon channels (in blue) allowing lithium ions to travel faster within the battery. The rigidity of the tantalum scaffold also limits the expansion of the silicon and preserve structural integrity.

Credit: Okinawa Institute of Science and Technology Graduate University Nanoparticles by Design Unit

Looking for better materials, silicon offers great advantages over carbon graphite for lithium batteries in terms of capacity. Six atoms of carbon are required to bind a single atom of lithium, but an atom of silicon can bind four atoms of lithium at the same time, multiplying the battery capacity by more than 10-fold. However, being able to capture that many lithium ions means that the volume of the anode swells by 300% to 400%, leading to fracturing and loss of structural integrity. To overcome this issue, OIST researchers have now reported in Advanced Science the design of an anode built on nanostructured layers of silicon - not unlike a multi-layered cake - to preserve the advantages of silicon while preventing physical collapse.

This new battery is also aiming to improve power, which is the ability to charge and deliver energy over time.

"The goal in battery technology right now is to increase charging speed and power output," explained Dr. Marta Haro Remon, first author of the study. "While it is fine to charge your phone or your laptop over a long period of time, you would not wait by your electric car for three hours at the charging station."

And when it comes to providing energy, you would want your car to start off quickly at a traffic light or a stop sign, requiring a high spike in power, rather than slowly creeping forward. A well-thought design of a silicone-based anode might be a solution and answer these expectations.

The idea behind the new anode in the Nanoparticles by Design Unit at the Okinawa Institute of Science and Technology Graduate University is the ability to precisely control the synthesis and the corresponding physical structure of the nanoparticles. Layers of unstructured silicon films are deposited alternatively with tantalum metal nanoparticle scaffolds, resulting in the silicon being sandwiched in a tantalum frame.

"We used a technique called Cluster Beam Deposition," continued Dr. Haro. "The required materials are directly deposited on the surface with great control. This is a purely physical method, there are no need for chemicals, catalysts or other binders."

"We used a technique called Cluster Beam Deposition," continued Dr. Haro. "The required materials are directly deposited on the surface with great control. This is a purely physical method, there are no need for chemicals, catalysts or other binders."

The outcome of this research, led by Prof. Sowwan at OIST, is an anode with higher power but restrained swelling, and excellent cyclability - the amount of cycles in which a battery can be charged and discharged before losing efficiency. By looking closer into the nanostructured layers of silicon, the scientists realized the silicon shows important porosity with a grain-like structure in which lithium ions could travel at higher speeds compared to unstructured, amorphous silicon, explaining the increase in power. At the same time the presence of silicon channels along the Ta nanoparticle scaffolds allows the lithium ions to diffuse in the entire structure. On the other hand, the tantalum metal casing, while restraining swelling and improving structural integrity, also limited the overall capacity - for now.

However, this design is currently only at the stage of proof-of-concept, opening the door to numerous opportunities to improve capacity along with the increased power.

"It is a very open synthesis approach, there are many parameters you can play around," commented Dr. Haro. "For example, we want to optimize the numbers of layers, their thickness, and replace tantalum metal with other materials."

With this technique paving the way, it might very well be that the solution for future batteries, forecast to be omnipresent in our lives, will be found in nanoparticles.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

Further reports about: battery ions lithium ions structural integrity

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>