Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super stable garnet ceramics may be ideal for high-energy lithium batteries

22.10.2014

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs.

The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.


ORNL researchers used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO that could help enable higher-energy battery designs.

Researchers frequently seek to improve a battery’s energy density by using a pure lithium anode, which offers the highest known theoretical capacity, and an aqueous electrolyte that can speedily transport lithium. The ORNL scientists believe the LLZO would be an ideal separator material, which is crucial.

“Many novel batteries adopt these two features [lithium anode and aqueous electrolyte], but if you integrate both into a single battery, a problem arises because the water is very reactive when in direct contact with lithium metal,” said ORNL postdoctoral associate Cheng Ma, first author on the team’s study published in Angewandte Chemie. “The reaction is very violent, which is why you need a protective layer around the lithium.”

Battery designers can use a solid electrolyte separator to shield the lithium, but their options are limited. Even the primary separator of choice, known as LAPT or LISICON, tends to break down under normal battery operating conditions.

“Researchers have searched for a suitable solid electrolyte separator material for years,” said ORNL’s Miaofang Chi, the study’s lead author. “The requirements for this type of material are very strict. It must be compatible with the lithium anode because lithium is reactive, and it also has to be stable over a wide pH range, because you can have an alkaline environment -- especially with lithium air batteries.”

The researchers used atomic resolution imaging to monitor structural changes in LLZO after the samples’ immersion in a range of aqueous solutions. The team’s observations showed that the compound remained structurally stable over time across neutral and extremely alkaline environments.

“This solid electrolyte separator remains stable even for a pH value higher than 14,” Ma said. “It gives battery designers more options for the selection of aqueous solutions and the catholyte.” Catholyte is the portion of the electrolyte close to the cathode.

In lithium-air batteries, for instance, researchers have previously tried to avoid the degradation of the separator by diluting the aqueous solutions, which only makes the battery heavier and bulkier. With this new type of solid electrolyte separator, there is no need to dilute the aqueous electrolyte, so it indirectly increases the battery’s energy density.

Higher-energy batteries are in demand for electrified transportation and electric grid energy storage applications, leading researchers to explore battery designs beyond the limits of lithium-ion technologies.

The researchers intend to continue their research by evaluating the LLZO garnet’s performance in an operating battery. Coauthors are ORNL’s Chengdu Liang, Karren More, Ezhiylmurugan Rangasamy, and Michigan State University’s Jeffrey Sakamoto. The study is published as “Excellent Stability of a Li-Ion-Conducting Solid Electrolyte upon Reversible Li+/H+ Exchange in Aqueous Solutions.”

This research was conducted in part at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. The research was supported by DOE’s Office of Science.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Morgan McCorkle | Eurek Alert!

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>