Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SUNY-ESF Produces ‘Next Generation of Biofuels’

25.05.2011
As gas prices hover over $4 per gallon and summer vacation season approaches, scientists at the SUNY College of Environmental Science and Forestry (ESF) are researching ways to turn wood into sustainable biobutanol.

Researchers in the college’s Department of Paper and Bioprocess Engineering are experimenting with different strains of bacteria that can ferment sugars extracted from wood into biobutanol that can be pumped into automobile gas tanks.

Researchers believe biobutanol — more efficient than ethanol in producing energy and easier to add to the existing gasoline distribution infrastructure — could be the emerging biofuel of the future.

"Biobutanol is one of the next generation of biofuels," said Dr. Timothy Volk of ESF's Department of Forest and Natural Resources Management. "Every day in the United States, two-thirds of the oil we use comes from outside this country. We can see the results of this in the increase in oil and gas prices.

"ESF is working on producing alternative biofuels from locally produced resources. We use wood," he said. "New York state has abundant wood. The forest is growing three times faster than it is being harvested. It can also be grown in the form of shrub willow as an agricultural crop on marginal agricultural land. So we are focused on using woody biomass from willow and natural forests as a feedstock, but other regions will use agricultural crop residuals or perennial grasses."

Volk, who leads the college’s Willow Biomass Project that is developing shrub willow as a renewable energy source, said biobutanol offers several advantages over the ethanol that is commonly mixed with gasoline in a mixture known as E10 (10 percent ethanol, 90 percent gasoline).

“Butanol has a higher energy density than ethanol and it can be pumped right into the existing gas pipeline. Going to a higher percentage of ethanol means a new delivery system,” Volk said. “Ethanol is less efficient and harder to mix with regular gas.”

Biobutanol is one of a handful of fuels that can be produced from wood sugars; the specific fuel that is produced depends on what kind of organism is used to ferment the sugar. Butanol, in addition to being a more efficient fuel than ethanol, also has the advantate of serving as a platform chemical for other purposes, including jet fuel.

The biobutanol research happens in a laboratory in Walters Hall on the ESF campus. Dr. Shijie Liu and his research team are experimenting with different strains of bacteria to see which can most effectively ferment the mixed sugars, including glucose and xylose, that have been obtained from wood through a process developed at the college several years ago into biobutanol.

In Liu’s lab, woody biomass such as willow cuttings and wood chips are processed with water to obtain those sugars. A strain of bacterium such as Clostridium acetobutylicum, a microorganism frequently used by industry in fermentation processes, is used to ferment the mixed sugars to butanol.

Liu and his students work in laboratories outfitted with an anaerobic chamber, used to fine tune the selection of microorganisms used in the fermentation process, and a bioreactor, in which the fermentation process occurs.

Liu’s research is supported by a $400,000 grant from the U.S. Department of Energy and $75,000 from the New York State Energy Research and Development Authority.

Claire B. Dunn | Newswise Science News
Further information:
http://www.esf.edu

Further reports about: Biofuels ESF agricultural crop fermentation process woody biomass

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>