Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunflowers Inspire More Efficient Solar Power System

20.08.2012
A field of young sunflowers will slowly rotate from east to west during the course of a sunny day, each leaf seeking out as much sunlight as possible as the sun moves across the sky through an adaptation called heliotropism.

It’s a clever bit of natural engineering that inspired imitation from a UW-Madison electrical and computer engineer, who has found a way to mimic the passive heliotropism seen in sunflowers for use in the next crop of solar power systems.

Unlike other “active” solar systems that track the sun’s position with GPS and reposition panels with motors, electrical and computer engineering professor Hongrui Jiang’s concept leverages the properties of unique materials in concert to create a passive method of re-orienting solar panels in the direction of the most direct sunlight.

His design, published Aug. 1 in Advanced Functional Materials and recently highlighted in Nature, employs a combination of liquid crystalline elastomer (LCE), which goes through a phase change and contracts in the presence of heat, with carbon nanotubes, which can absorb a wide range of light wavelengths.

"Carbon nanotubes have a very wide range of absorption, visible light all the way to infrared,” says Jiang. “That is something we can take advantage of, since it is possible to use sunlight to drive it directly."

Direct sunlight hits a mirror beneath the solar panel, focused onto one of multiple actuators composed of LCE laced with carbon nanotubes. The carbon nanotubes heat up as they absorb light, and the heat differential between the environment and inside the actuator causes the LCE to shrink.

This causes the entire assembly to bow in the direction of the strongest sunlight. As the sun moves across the sky, the actuators will cool and re-expand, and new ones will shrink, re-positioning the panel over the 180 degrees of sky that the sun covers in the course of the day.

"The idea is that wherever the sun goes, it will follow," says Jiang.

In Jiang’s tests, the system improved the efficiency of solar panels by 10 percent, an enormous increase considering material improvements in the solar panels themselves only net increases of a few percent on average. And a passive system means there are no motors and circuits to eat into increased energy harvest.

"The whole point of solar tracking is to increase the electricity output of the system,” says Jiang.

The materials driving Jiang’s design have only been available in the past few years, so for now, he and his team are researching ways to refine them for use driving larger solar panels, where the net energy gain from his system will be the greatest.

But eventually, Jiang hopes to see huge industrial solar farms where fields of photovoltaic solar panels shift effortlessly along with the sunflowers that inspired him.

"This is exactly what nature does,” says Jiang.

For video of a proof-of-concept of Jiang's design in action, visit http://youtu.be/5RuBrk5q37Y or http://youtu.be/EtuDGdT6LJs

– Mark Riechers, 608-265-8595, mriechers@engr.wisc.edu

Mark Riechers | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>