Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Summer heat for the winter

10.01.2017

Can thermal solar energy be stored until wintertime? Within a European research consortium Empa scientists and their colleagues have spent four years studying this question by pitting three different techniques against each other.

We are still a far cry from a sustainable energy supply: in 2014, 71 percent of all privately-owned apartments and houses in Switzerland were heated with fossil fuels, and 60 percent of the hot water consumed in private households is generated in this way. In other words, a considerable amount of fossil energy could be saved if we were able to store heat from sunny summer days until wintertime and retrieve it at the flick of a switch. Is there a way to do this?


Benjamin Fumey at his test facility in the lab

Empa

It certainly looks like it. Since autumn of 2016, following several years of research, Empa has a plant on a lab scale in operation that works reliably and is able to store heat in the long term. But the road to get there was long and winding.

The theory behind this kind of heat storage is fairly straightforward: if you pour water into a beaker containing solid or concentrated sodium hydroxide (NaOH), the mixture heats up. The dilution is exothermic: chemical energy is released in the form of heat. Moreover, sodium hydroxide solution is highly hygroscopic and able to absorb water vapor. The condensation heat obtained as a result warms up the sodium hydroxide solution even more.

The other way round is also possible: if we feed energy into a dilute sodium hydroxide solution in the form of heat, the water evaporates; the sodium hydroxide solution will get more concentrated and thus stores the supplied energy. This solution can be kept for months and even years, or transported in tanks. If it comes into contact with water (vapor) again, the stored heat is re-released.

So much for the theory, anyway. But could the beaker experiment be replicated on a scale capable of storing enough energy for a single-family household? Empa researchers Robert Weber and Benjamin Fumey rolled up their sleeves and got down to work. They used an insulated sea container as an experimental laboratory on Empa’s campus in Dübendorf – a safety precaution as concentrated sodium hydroxide solution is highly corrosive. If the system were to spring a leak, it would be preferable for the aggressive liquid to slosh through the container instead of Empa’s laboratory building.

Unfortunately, the so-called COMTES prototype didn’t work as anticipated. The researchers had opted for a falling film evaporator – a system used in the food industry to condense orange juice into a concentrate, for instance. Instead of flowing correctly around the heat exchanger, however, the thick sodium hydroxide solution formed large drops. It absorbed too little water vapor and the amount of heat that was transferred remained too low.

Then Fumey had a brainwave: the viscous storage medium should trickle along a pipe in a spiral, absorb water vapor on the way and transfer the generated heat to the pipe. The reverse – charging the medium – should also be possible using the same technique, only the other way round. It worked. And the best thing about it: spiral-shaped heat exchangers are already available ex stock – heat exchangers from flow water heaters.

Fumey then optimized the lab system further: which fluctuations in NaOH concentration are optimal for efficiency? Which temperatures should the inflowing and outflowing water have? Water vapor at a temperature of five to ten degrees is required to drain the store. This water vapor can be produced with heat from a geothermal probe, for instance. In the process, 50-percent sodium hydroxide solution runs down the outside of the spiral heat exchanger pipe and is thinned to 30 percent in the steam atmosphere. The water inside the pipe heats up to around 50 degrees Celsius – which makes it just the ticket for floor heating.

While replenishing the store, the 30-percent, “discharged” sodium hydroxide solution trickles downwards around the spiral pipe. Inside the pipe flows 60-degree hot water, which can be produced by a solar collector, for instance. The water from the sodium hydroxide solution evaporates; the water vapor is removed and condensed. The condensation heat is conducted into a geothermal probe, where it is stored. The sodium hydroxide solution that leaves the heat exchanger after charging is concentrated to 50 percent again, i.e. “charged” with thermal energy.

“This method enables solar energy to be stored in the form of chemical energy from the summer until the wintertime,” says Fumey. “And that’s not all: the stored heat can also be transported elsewhere in the form of concentrated sodium hydroxide solution, which makes it flexible to use.” The search for industrial partners to help build a compact household system on the basis of the Empa lab model has now begun. The next prototype of the sodium hydroxide storage system could then be used in NEST, for example.

COMTES: European heat storage technology contest
In the realm of the European research project COMTES, three different heat storage system demonstrators were pitted against each other from 2012 to the spring of 2016.
Project group A (Austria, Germany) studied the storage of water in zeolites. These microporous silicate minerals are found as additives in detergents or as a coolant in self-cooling beer kegs, for instance. They are hygroscopic and emit heat when they become moist.
Project group B (Switzerland, Northern Ireland) studied the storage of heat at a test plant with concentrated sodium hydroxide solution (see article on the left). See all storage projects in Switzerland www.sccer-hae.ch
Project group C (Denmark, Austria) examined the storage of heat in so-called phase change materials that melt and solidify. For the experiments, they used sodium acetate, a substance also found in small warming cushions, which are popular among hunters and outdoor enthusiasts.
http://comtes-storage.eu/

Weitere Informationen:

http://www.empa.ch/web/s604/naoh-heat-storage

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>