Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Shows Sugarcane Ethanol Production Causes Air Pollution

The burning of sugarcane fields prior to harvest for ethanol production can create air pollution that detracts from the biofuel’s overall sustainability, according to research published recently by a team of researchers led by scientists at the University of California, Merced.

UC Merced graduate student Chi-Chung Tsao was the lead author on the paper and was aided in the study by UC Merced professors Elliott Campbell and Yihsu Chen. The study — published online this week in the Nature Climate Change journal — focused on Brazil, the world’s top producer of sugarcane ethanol and a possible source for U.S. imports of the alternative fuel.

“There is a big strategic decision our country and others are making, in whether to develop a domestic biofuels industry or import relatively inexpensive biofuels from developing countries,” Campbell said. “Our study shows that importing biofuels could result in human health and environmental problems in the regions where they are cultivated.”

Click here for a PDF of the study

Ethanol is seen as an alternative to fossil fuels, which emit greenhouse gasses when used and are a major contributor to air pollution and climate change. But despite some governments encouraging farmers to reduce field burning — which is done in part to protect farmworkers by removing sharp leaves and harmful animals — more than half of sugarcane croplands in Brazil continue to be burned.

That leads to a reduction in air quality that can offset the benefits of ethanol over petroleum fuels that emit more greenhouse gases during their use, something Campbell said the U.S. should consider when determining whether to import inexpensive ethanol from Brazil or continuing to invest in domestic corn ethanol production.

“Unlike petroleum production, the potential to produce biofuels is relatively evenly distributed across many countries, and this is a big plus from an energy security perspective,” Campbell said. “However, agriculture practices in some regions result in biofuels that lead to even more intense air pollution than petroleum.”

Satellites are currently used to measure air pollution in Brazil, but the study shows actual pollution caused by sugarcane field burning could be four times greater than satellite estimates. The researchers believe this is due to the relatively small scale of individual fires.

Other researchers involved in the study were Scott Spak and Greg Carmichael of the University of Iowa and Marcelo Mena-Carrasco of the Universidad Andres Belo in Chile.

UC Merced opened Sept. 5, 2005, as the 10th campus in the University of California system and the first American research university of the 21st century. The campus significantly expands access to the UC system for students throughout the state, with a special mission to increase college-going rates among students in the San Joaquin Valley. It also serves as a major base of advanced research and as a stimulus to economic growth and diversification throughout the region. Situated near Yosemite National Park, the university is expected to grow rapidly, topping out at about 25,000 students within 30 years.

James Leonard | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>