Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows greater potential for solar power

23.06.2014

Concentrating solar power (CSP) could supply a large fraction of the power supply in a decarbonized energy system, shows a new study of the technology and its potential practical application.

Concentrating solar power (CSP) could supply a substantial amount of current energy demand, according to the study published in the journal Nature Climate Change. In the Mediterranean region, for example, the study shows that a connected CSP system could provide 70-80% of current electricity demand, at no extra cost compared to gas-fired power plants. That percentage is similar to what a standard energy production plant, such as a nuclear plant, can provide.

“Solar energy systems can satisfy much more of our hunger for electricity, at not much more cost than what we currently have,” says Stefan Pfenninger, who led the study while working at IIASA. He is now a Research Postgraduate at the Grantham Institute at Imperial College London.

The study was the first to examine the potential of CSP as a large-scale energy production system, in four regions around the world.

“In order to address climate change we need to greatly expand our use of renewable energy systems,” says IIASA researcher Fabian Wagner, who also worked on the study. “The key question, though, is how much energy renewable systems can actually deliver.”

One problem with deploying solar energy on a large scale is that the sun doesn’t shine all the time. That means that energy must be stored in some way. For photovoltaic (PV) cells, which convert sunlight directly to electricity, this is especially difficult to overcome, because electricity is difficult to store.

Unlike photovoltaic (PV) cells, CSP uses the sun’s energy to heat up a liquid that drives turbines. This means that the collected energy can be stored as heat, and converted to electricity only when needed. But even with CSP, if the sun doesn’t shine for long periods of time, the system may not be able to support large-scale energy needs.

One way to solve this problem is to build a large, connected network of CSP. Until now, however, nobody had explored the details and feasibility of such a plan. In the new study, the researchers simulated the construction and operation of CSP systems in four regions around the world, taking into account weather variations, plant locations, electricity demand, and costs.

“Our study is the first to look closely at whether it’s possible to build a power system based primarily on solar energy, and still provide reliable electricity to consumers around the clock, every day of the year. We find this to be possible in two world regions, the Mediterranean basin and the Kalahari Desert of Southern Africa,” says study co-author Anthony Patt, Professor of Human-Environment Systems, ETH Zurich Department of Environmental Systems Science, and an IIASA guest research scholar.

Reference
Pfenninger S, Gauche P, Lilliestam J, Damerau K, Wagner F, Patt A. (2014). The potential for concentrating solar power to provide baseload and dispatchable power. Nature Climate Change. doi: 10.1038/nclimate2276

For more information contact:

Stefan Pfenninger
Research Postgraduate
Faculty of Engineering, Department of Civil and Environmental Engineering
Grantham Institute, Imperial College
+44 (0)20 7594 6018
s.pfenninger12@imperial.ac.uk

Fabian Wagner
Senior Research Scholar
Mitigation of Air Pollution and Greenhouse Gases
+43(0) 2236 807 565
wagnerf@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania and Europe. www.iiasa.ac.at

Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: Analysis CSP Climate Environmental IIASA Mediterranean electricity heat

More articles from Power and Electrical Engineering:

nachricht Electromobility: Powerful Ultralight Motor for Electrically Powered Flight
27.04.2015 | Siemens AG

nachricht The Future of Oil and Gas: Last of Her Kind
27.04.2015 | Siemens AG

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

Highly Conductive Germanium Nanowires Made by a Simple, One-Step Process

27.04.2015 | Materials Sciences

Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>