Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Explores Using Oceans and Lakes as Renewable Energy Resources

25.07.2011
As the demand for energy increases worldwide, the search for renewable and viable sources of power intensifies. Two Ryerson University researchers have taken that search underwater, and using Iran as a test case, have found that oceans and lakes could make an enormous contribution to global energy production.

“Bodies of water are a huge, untapped source of energy. They contain highly concentrated and highly dense forms of energy, which provide roughly the same amount of energy as thousands of solar panels and wind turbines,” said Alan Fung, a professor of mechanical and industrial engineering, and lead author of the paper, Review of Marine Renewable Energies: Case Study of Iran. The study analyzed the seas and lakes in Iran and surrounding areas to assess the potential of different types of marine energy.

As a renewable resource marine energy, unlike wind and solar energy, can be obtained at any time and can be stored free of charge. Bodies of water offer predictable amounts of energy, and in some cases, require smaller infrastructure (and less capital investment) to extract energy than other renewable sources of power. Harnessing marine energy is also more environmentally sustainable as conventional fossil fuel-fired electricity generation can cause pollution and lead to global warming.

While the technology to support certain types of marine energy is not yet commercially available, the researchers say their study shows that further investment is needed in order to make full use of this rich, renewable resource.

“You need to have a vision for the future,” said co-author Farshid Zabihian. “We shouldn’t wait until the technology is perfect to use marine energy. We can start right now by introducing it in smaller communities and through pilot projects.”

The data used in the study was provided by Zabihian, who studied power generation in Iran before moving to Canada to pursue a PhD in mechanical engineering at Ryerson. A former student of Fung, Zabihian graduated from Ryerson in June and will soon join the faculty of the West Virginia University Institute of Technology.

Using Zabihian’s data, the researchers examined the viability of five distinct types of marine energy. It was discovered that each one was specifically suited for Iran’s various bodies of water and could also be used in particular regions elsewhere in the world.

For example, wave energy, which is produced by the wind’s effect on water, does not require large areas of land in order to capture the energy from incoming waves. For that reason, this type of energy would be most effective on remote islands that are not connected to the power grid and where electricity is quite expensive. According to the World Energy Council, worldwide wave energy could potentially provide up to 12 per cent of current global electricity demand.

Tidal energy is created by the gravitational forces of the moon and the sun on the waters and rotation of the Earth. It is a highly predictable source of energy. Tidal energy takes the form of potential energy (the difference in water levels between ebb and flow) or kinetic energy (from the tidal current). As such, it could be used to replace or support conventional types of power generation.

Other types of energy examined by Fung and Zabihian include: ocean thermal energy, which relies upon the temperature difference between warm, shallow water and cold, deep water; ocean current energy, which requires the installation of underwater turbines to collect energy generated by wind and temperature differences in oceans due to solar heating; and salinity gradient energy, which produces energy from the osmotic pressure difference ( the amount of pressure needed to prevent a solution from flowing through a membrane) between fresh and salty water.

Review of Marine Renewable Energies: Case Study of Iran was published in the June 2011 issue of the journal Renewable and Sustainable Energy Reviews.

Ryerson University is Canada's leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers more than 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master's and PhD students, nearly 2,700 faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education. For more information, visit www.ryerson.ca

Johanna VanderMaas | Newswise Science News
Further information:
http://www.ryerson.ca

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>