Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Make Biodiesel from Waste Vegetable Oil

27.05.2009
A group of Virginia Tech students have produced more than 200 gallons of biodiesel as part of a senior design project. They are using it in two pickup trucks.

A group of Virginia Tech students have produced more than 200 gallons of biodiesel as part of a senior design project for the department of mechanical engineering. The Virginia Tech Bio-Fuels group is putting the fuel to direct use, running two pickup trucks on the liquid in a bid to not only stave off the use of foreign-bought oil but also to be environmentally friendly.

The B100 biodiesel is made from waste vegetable oil (WVO) obtained from local restaurants and processed in a nondescript warehouse along Virginia Tech's Plantation Road, surrounded by fields dedicated to farm animals. The 200 gallons were made during the past two months, mainly by processing equipment donated to the student team.

The project is overseen by Foster Agblevor, associate professor of biological systems engineering for the College of Engineering and the College of Life Sciences and Agriculture. Agblevor already has made headlines with experimental alternative fuels such as converting poultry litter into bio-oil.

The project began in 2008 when the now senior team consisted of juniors. The first year consisted of planning, research, and obtaining the funding and needed equipment for the project. This year consisted of more research, design, construction of process equipment, and converting the WVO into biodiesel for consistent use. The group produces B100, or 100 biodiesel.

"In the summer, the viscosity of the 100 percent biodiesel is low enough to use," said Christopher Block, who received his bachelor's degree in mechanical engineering in spring 2009 from Lake Forest, Ill. During winter months, certain biodiesels derived from animal fat have been known to gel or freeze in the tank. Therefore, the fuel must be mixed with regular petroleum to operate properly. "We learned via emissions testing that the B20 and B50 blends produce more favorable emissions than the B100 fuel," Block said, referring to mixes that use 80 percent petroleum and 20 percent biodiesel, and an even split, respectively.

The group limited its project to 200 gallons of biodiesel because of space limitations at the warehouse, but could produce more if needed. For now, the team can make up to 50 gallons at a time, so the potential for fueling a small fleet is possible. Already there are some takers.

"We are building a new team for next year who will take it to the next level," Agblevor said. "Giles County Wheatland Eco-Park would like them to install the unit on their property for education and other purposes." An unnamed company is interested in commercializing the project, and that the university's cafeterias could provide the waste grease product. "I will be encouraging [biological systems engineering] department to start using our biodiesel on some of the equipment that runs on diesel fuel," he added.

Block will remain on campus next year as he pursues a master's degree in mechanical engineering. He hopes to continue with the biodiesel project, but a permanent home for the operation must be found. The team had hopes to acquire a trailer so they could take the equipment around the state, including the Virginia State Fair, for tours. However, the idea proved too expensive.

The student team, in addition to Block, includes

* Christopher Chelko of Huntersville, N.C., mechanical engineering;

* Matteo del Ninno of Alexandria, Va., mechanical engineering;

* Brian Eggleston of Blacksburg, Va., mechanical engineering;

* Blake Gordon of Bluefield, W.Va., mechanical engineering;

* Meredith Herrmann of Manasquan, N.J., industrial systems engineering; and

* Andrew Yard of Frenchtown, N.J., mechanical engineering.

The process of making the oil is straight forward.

1. The collected oil is pre-filtered using a centrifuge unit to remove sediments and food debris. Oil that hasn’t been used long is best. The filtering process continues as the oil is pre-heated in a tank, and then put through filter bags.

2. The level of the oil’s acidity is then determined. This determines how much methoxide, a combination of potassium hydroxide and methanol, to add to the oil. The vegetable oil is kept at roughly 140 degrees Fahrenheit during this process.

3. The mixture is agitated for roughly 8 hours at the same temperature. During the reaction stage, the catalyst -- caustic potash or Potassium Hydroxide -- attacks the oil and begins breaking the molecules apart into glycerol and fatty acid chains. Just after the molecules are broken apart, the methanol begins to react with the fatty acid chains. Glycerin, a side product, is produced when the glycerol molecules separated from the reaction mixture.

4. The solution is then moved into settling tanks, where the glycerin settles to the bottom of the tank while the freshly made biodiesel remains at the top. The glycerin is drained out, and used for several purposes including composting or with animal feed.

5. The biodiesel now must be washed with water that is sprayed into the tanks containing the unwashed fuel. As the water falls, excess methanol and soap molecules dissolve in the water and settles in the bottom layer, thereby cleansing the biodiesel.

6. The soapy waste water is now drained off the oil, leaving behind “wet” liquid biodiesel. To “dry” the fuel of water, the biodiesel is heated for several hours to evaporate the water.

7. The finished biodiesel is then pumped through a final filter into a diesel vehicle’s fuel tank.

Steven Mackay | Newswise Science News
Further information:
http://www.vtbiofuels.com
http://www.vt.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>