Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Make Biodiesel from Waste Vegetable Oil

27.05.2009
A group of Virginia Tech students have produced more than 200 gallons of biodiesel as part of a senior design project. They are using it in two pickup trucks.

A group of Virginia Tech students have produced more than 200 gallons of biodiesel as part of a senior design project for the department of mechanical engineering. The Virginia Tech Bio-Fuels group is putting the fuel to direct use, running two pickup trucks on the liquid in a bid to not only stave off the use of foreign-bought oil but also to be environmentally friendly.

The B100 biodiesel is made from waste vegetable oil (WVO) obtained from local restaurants and processed in a nondescript warehouse along Virginia Tech's Plantation Road, surrounded by fields dedicated to farm animals. The 200 gallons were made during the past two months, mainly by processing equipment donated to the student team.

The project is overseen by Foster Agblevor, associate professor of biological systems engineering for the College of Engineering and the College of Life Sciences and Agriculture. Agblevor already has made headlines with experimental alternative fuels such as converting poultry litter into bio-oil.

The project began in 2008 when the now senior team consisted of juniors. The first year consisted of planning, research, and obtaining the funding and needed equipment for the project. This year consisted of more research, design, construction of process equipment, and converting the WVO into biodiesel for consistent use. The group produces B100, or 100 biodiesel.

"In the summer, the viscosity of the 100 percent biodiesel is low enough to use," said Christopher Block, who received his bachelor's degree in mechanical engineering in spring 2009 from Lake Forest, Ill. During winter months, certain biodiesels derived from animal fat have been known to gel or freeze in the tank. Therefore, the fuel must be mixed with regular petroleum to operate properly. "We learned via emissions testing that the B20 and B50 blends produce more favorable emissions than the B100 fuel," Block said, referring to mixes that use 80 percent petroleum and 20 percent biodiesel, and an even split, respectively.

The group limited its project to 200 gallons of biodiesel because of space limitations at the warehouse, but could produce more if needed. For now, the team can make up to 50 gallons at a time, so the potential for fueling a small fleet is possible. Already there are some takers.

"We are building a new team for next year who will take it to the next level," Agblevor said. "Giles County Wheatland Eco-Park would like them to install the unit on their property for education and other purposes." An unnamed company is interested in commercializing the project, and that the university's cafeterias could provide the waste grease product. "I will be encouraging [biological systems engineering] department to start using our biodiesel on some of the equipment that runs on diesel fuel," he added.

Block will remain on campus next year as he pursues a master's degree in mechanical engineering. He hopes to continue with the biodiesel project, but a permanent home for the operation must be found. The team had hopes to acquire a trailer so they could take the equipment around the state, including the Virginia State Fair, for tours. However, the idea proved too expensive.

The student team, in addition to Block, includes

* Christopher Chelko of Huntersville, N.C., mechanical engineering;

* Matteo del Ninno of Alexandria, Va., mechanical engineering;

* Brian Eggleston of Blacksburg, Va., mechanical engineering;

* Blake Gordon of Bluefield, W.Va., mechanical engineering;

* Meredith Herrmann of Manasquan, N.J., industrial systems engineering; and

* Andrew Yard of Frenchtown, N.J., mechanical engineering.

The process of making the oil is straight forward.

1. The collected oil is pre-filtered using a centrifuge unit to remove sediments and food debris. Oil that hasn’t been used long is best. The filtering process continues as the oil is pre-heated in a tank, and then put through filter bags.

2. The level of the oil’s acidity is then determined. This determines how much methoxide, a combination of potassium hydroxide and methanol, to add to the oil. The vegetable oil is kept at roughly 140 degrees Fahrenheit during this process.

3. The mixture is agitated for roughly 8 hours at the same temperature. During the reaction stage, the catalyst -- caustic potash or Potassium Hydroxide -- attacks the oil and begins breaking the molecules apart into glycerol and fatty acid chains. Just after the molecules are broken apart, the methanol begins to react with the fatty acid chains. Glycerin, a side product, is produced when the glycerol molecules separated from the reaction mixture.

4. The solution is then moved into settling tanks, where the glycerin settles to the bottom of the tank while the freshly made biodiesel remains at the top. The glycerin is drained out, and used for several purposes including composting or with animal feed.

5. The biodiesel now must be washed with water that is sprayed into the tanks containing the unwashed fuel. As the water falls, excess methanol and soap molecules dissolve in the water and settles in the bottom layer, thereby cleansing the biodiesel.

6. The soapy waste water is now drained off the oil, leaving behind “wet” liquid biodiesel. To “dry” the fuel of water, the biodiesel is heated for several hours to evaporate the water.

7. The finished biodiesel is then pumped through a final filter into a diesel vehicle’s fuel tank.

Steven Mackay | Newswise Science News
Further information:
http://www.vtbiofuels.com
http://www.vt.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>