Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail

02.10.2014

Pity the poor lithium ion. Drawn relentlessly by its electrical charge, it surges from anode to cathode and back again, shouldering its way through an elaborate molecular obstacle course. This journey is essential to powering everything from cell phones to cordless power tools. Yet, no one really understands what goes on at the atomic scale as lithium ion batteries are used and recharged, over and over again.

Michigan Technological University researcher Reza Shahbazian-Yassar has made it his business to better map the ion’s long, strange trip—and perhaps make it smoother and easier. His ultimate aim: to make better batteries, with more power and a longer life.


This color-enhanced image reveals how the structure of zinc-antimonide changes as lithium ions enter the anode. Anmin Nie image

Using transmission electron microscopy, Anmin Nie, a senior postdoctoral researcher in Shahbazian-Yassar’s research group, has recently documented what can happen to anodes as lithium ions work their way into them, and it’s not especially good. The research was recently published in the journal Nano Letters.

“We call it atomic shuffling,” says Shahbazian-Yassar, the Richard and Elizabeth Henes Associate Professor in Nanotechnology. “The layered structure of the electrode changes as the lithium goes inside, creating a sandwich structure: there is lots of localized expansion and contraction in the electrode crystals, which helps the lithium blaze a trail through the electrode.”

The atomic shuffling not only helps explain how lithium ions move through the anode, in this case a promising new material called zinc antimonide. It also provides a clue as to why most anodes made of layered materials eventually fail. “We showed that the ions cause a lot of local stress and phase transitions,” Anmin said.

The paper, “Lithiation-Induced Shuffling of Atomic Stacks,” is coauthored by Shahbazian-Yassar, Nie and graduate student Hasti Asayesh-Ardakani of Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics; Yingchun Cheng, Yun Han and Udo Schwingenschlogl of King Abdulla University of Science and Technology, in Saudi Arabia; Runzhe Tao, Farzad Mashayet and Robert Klie of the University if Illinois at Chicago; and Sreeram Vaddiraju of Texas A&M University.

The microscopy was conducted at the University of Illinois at Chicago.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Jennifer Donovan | Eurek Alert!
Further information:
http://www.mtu.edu/news/stories/2014/september/stressed-out-research-sheds-new-light-why-rechargeable-batteries-fail.html

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>