Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Steam of hot flue gases saves energy at steel mills

A new solution from Siemens takes advantage of hot flue gases from arc furnaces to generate steam. This steam can then be used for other steel mill processes or for generating electricity.

In the past, flue gases were usually not utilized, so the energy they carried was lost. The system consists of steam boilers, pipes, water tanks, and pumps and can be directly integrated into the existing flue gas cooling system. Theoretically, the system could entirely replace conventional cooling.

A feasibility study carried out at a steel mill in Turkey revealed potential savings of 44.5 kilowatt hours of electricity per ton of steel produced. That corresponds to around ten percent of the electrical energy that is normally required. If the steam were used to preheat the feed water for the steel mill's power plant, for example, the mill would save 45,000 tons of coal per year.

Electric arc furnaces melt steel scrap under arcs heated to a temperature of about 3,500 °C using high-voltage electricity. Depending on the specific furnace operation, up to one third of the energy used escapes in the flue gases. Normally these flue gases - which can be as hot as 1,800 °C - are extracted from the furnace through water-cooled pipes. Because this cooling water circulates within a closed system, it cannot be permitted to form steam. Cooling towers dissipate the excess heat.

This is where the solution developed by the experts at Siemens Metals Technologies comes in. The hot flue gas is diverted into a steam generator, where it flows around pipes filled with water. The heat from the gas turns the water into steam. A sophisticated system of nested heating surfaces ensures that heat is transferred from the flue gas as efficiently as possible.

Special recirculation pumps ensure that the steam boiler is adequately cooled. The system can handle fluctuations in flue gas temperature and volume, and it is specially designed to deal with the high levels of dust, some of which is corrosive, in the flue gas. Continuous steam production, such as that required for generating electricity, can be achieved through the installation of optional storage buffers known as "steam accumulators."

The heat from the flue gas can be recovered even more efficiently if the gas is directed through an "economizer" after it leaves the steam boiler. In the "economizer" the gas flows around a second system of pipes, where the remainder of its heat is used to preheat the feed water for the steam boiler.

The steam generation system has a modular construction and can be easily adapted to the specific requirements of each plant. This makes it especially easy to modernize existing steel mills.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>