Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists publish theory, formula to improve 'plastic' semiconductors

24.09.2013
A better understanding of the conductive properties of flexible semiconductors will aid in the development of bendable electronics

Anyone who's stuffed a smart phone in their back pocket would appreciate the convenience of electronic devices that could bend. Flexible electronics could spawn new products: clothing wired to cool or heat, reading tablets that could fold like newspaper, and so on.

Alas, electronic components such as chips, displays and wires are generally made from metals and inorganic semiconductors -- materials with physical properties that make them fairly stiff and brittle.

In the quest for flexibility many researchers have been experimenting with semiconductors made from plastics or, more accurately polymers, which bend and stretch readily enough.

"But at the molecular level polymers look like a bowl of spaghetti," says Stanford chemical engineering professor Andrew Spakowitz, adding: "Those non-uniform structures have important implications for the conductive properties of polymeric semiconductors."

Spakowitz and two colleagues, Rodrigo Noriega, a postdoctoral researcher at UC Berkeley, and Alberto Salleo, a Stanford professor of Materials Science and Engineering, have created the first theoretical framework that includes this molecular-level structural inhomogeneity, seeking to understand, predict and improve the conductivity of semiconducting polymers.

Their theory, published today (Monday Sept 23@12 pm PST) in the Proceedings of the National Academy of Sciences, deals with the observed tendency of polymeric semiconductors to conduct electricity at differing rates in different parts of the material – a variability that, as the Stanford paper explains, turns out to depend on whether the polymer strands are coiled up like a bowl of spaghetti or run relatively true, even if curved, like lanes on a highway.

In other words, the entangled structure that allows plastics and other polymers to bend also impedes their ability to conduct electricity, whereas the regular structure that makes silicon semiconductors such great electrical switches tends to make it a bad fit for our back pockets.

The Stanford paper in PNAS gives experimental researchers a model that allows them to understand the tradeoff between the flexibility and conductivity of polymeric semiconductors.

Grasping how they created their model requires a basic understanding of polymers. The word "polymer" is derived from the Greek for "many parts" which aptly describes their simple molecular structure, which consists of identical units, called monomers, that string together, end to end, like so many sausages. Humans have long used natural polymers such as silk and wool, while newer industrial processes have adapted this same technique to turn end-to-end chains of hydrocarbon molecules, ultimately derived from petroleum byproducts, into plastics.

But it was only in the late 1970s that a trio of scientists discovered that plastics which, until then were considered non-conductive materials suitable to wrap around wires for insulation could, under certain circumstances, be induced to conduct electricity.

The three scientists, Alan Heeger, Alan MacDiarmid and Hideki Shirakawa, shared the Nobel Prize in Chemistry in 2000 for their co-discovery of polymeric semiconductors. In recent years, with increasing urgency, researchers have been trying to harness the finicky electrical properties of plastics with an eye toward fashioning electronics that will bend without breaking.

In the process of experimenting with polymeric semiconductors, however, researchers discovered that these flexible materials exhibited "anomalous transport behavior" or, simply put, variability in the speed at which electrons flowed through the system.

One of the fundamental insights of the Stanford paper is that electron flow through polymers is affected by their spaghetti-like structure – a structure that is far less uniform than that of the various forms of silicon and other inorganic semiconductors whose electrical properties are much better understood.

"Prior theories of electrical flow in polymeric semiconductors are largely extrapolated from our understanding of metals and inorganic semiconductors like silicon," Spakowitz said, adding that he and his collaborators began by taking a molecular-level view of the electron transport issue.

In essence, the variability of electron flow through polymeric semiconductors owes to the way the structure of these molecular chains creates fast paths and congestion points (refer to diagram). In a stylized sense imagine that a polymer chain runs relatively straight before coming to a hairpin turn to form a U-shape. An electric field moves electrons rapidly up to the hairpin, only to stall.

Meanwhile imagine a similar U-shape polymer separated from the first by a tiny gap. Eventually, the electrons will jump that gap to go from the first fast path to the opposing fast path. One way to think about this is a traffic analogy, in which the electrons must wait for a traffic light to cross from one street, though the gap, before proceeding down the next.

Most importantly, perhaps, in terms of putting this knowledge to use, the Stanford theory includes a simple algorithm that begins to suggest how to control the process for making polymers – and devices out of the resulting materials - with an eye toward improving their electronic properties.

"There are many, many types of monomers and many variables in the process," Spakowitz said. The model presented by the Stanford team simplifies this problem greatly by reducing it to a small number of variables describing the structural and electronic properties of semiconducting polymers. This simplicity does not preclude its predictive value; in fact, it makes it possible to evaluate the main aspects describing the physics of charge transport in these systems.

"A simple theory that works is a good start," said Spakowitz, who envisions much work ahead to bring bending smart phones and folding e-readers to reality.

Media Contact: Tom Abate, Associate Director of Communications, Stanford Engineering, 650-736-2245, tabate@stanford.edu

Tom Abate | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>