Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford makes flexible carbon nanotube circuits more reliable and power efficient

18.03.2014

Engineers invent a process to 'dope' carbon filaments with an additive to improve their electronic performance, paving the way for digital devices that bend.

Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach they are trying involves designing circuits based on electronic fibers, known as carbon nanotubes (CNTs), instead of rigid silicon chips.

Flexible CNT Chip

Stanford engineers have developed an improved process for making flexible circuits that use carbon nanotube transistors, a development that paves the way for a new generation of bendable electronic devices.

Credit: Bao Lab, Stanford University

But reliability is essential. Most silicon chips are based on a type of circuit design that allows them to function flawlessly even when the device experiences power fluctuations. However, it is much more challenging to do so with CNT circuits.

Now a team at Stanford has developed a process to create flexible chips that can tolerate power fluctuations in much the same way as silicon circuitry.

"This is the first time anyone has designed a flexible CNT circuits that have both high immunity to electrical noise and low power consumption, " said Zhenan Bao, a professor of chemical engineering at Stanford with a courtesy appointment in Chemistry and Materials Science and Engineering.

The group reported its findings in the Proceedings of the National Academy of Sciences. Huiliang (Evan) Wang, a graduate student in Bao's lab, and Peng Wei, a previous postdoc in Bao's lab, were the lead authors of the paper. Bao's team also included Yi Cui, an associate professor of materials science at Stanford, and Hye Ryoung Lee, a graduate student in his lab.

In principle, CNTs should be ideal for making flexible electronic circuitry. These ultra thin carbon filaments have the physical strength to take the wear and tear of bending, and the electrical conductivity to perform any electronic task.

But until this recent work from the Stanford team, flexible CNTs circuits didn't have the reliability and power-efficiency of rigid silicon chips.

Here's the reason. Over time, engineers have discovered that electricity can travel through semiconductors in two different ways. It can jump from positive hole to positive hole, or it can push through a bunch of negative electronic like a beaded necklace. The first type of semiconductor is called a P-type, the second is called and N-type.

Most importantly, engineers discovered that circuits based on a combination of P-type and N-type transistors perform reliably even when power fluctuations occur, and they also consume much less power. This type of circuit with both P-type and N-type transistors is called complementary circuit. Over the last 50 years engineers have become adept at creating this ideal blend of conductive pathways by changing the atomic structure of silicon through the addition of minute amounts of useful substances – a process called "doping" that is conceptually akin to what our ancestors did thousands of years ago when they stirred tin into molten copper to create bronze.

The challenge facing the Stanford team was that CNTs are predominately P-type semiconductors and there was no easy way to dope these carbon filaments to add N-type characteristics.

The PNAS paper explains how the Stanford engineers overcame this challenge. They treated CNTs with a chemical dopant they developed known as DMBI, and they used an inkjet printer to deposit this substance in precise locations on the circuit.

This marked the first time any flexible CNT circuit has been doped to create a P-N blend that can operate reliably despite power fluctuations and with low power consumption.

The Stanford process also has some potential application to rigid CNTs. Although other engineers have previously doped rigid CNTs to create this immunity to electrical noise, the precise and finely tuned Stanford process out performs these prior efforts, suggesting that it could be useful for both flexible and rigid CNT circuitry.

Bao has focused her research on flexible CNTs, which compete with other experimental materials, such as specially formulated plastics, to become the foundation for bendable electronics, just as silicon has been the basis for rigid electronics.

As a relatively new material, CNTs are playing catch up to plastics, which are closer to mass market use for such things as bendable display screens. The Stanford doping process moves flexible CNTs closer toward commercialization because it shows how to create the P-N blend, and the resultant improvements in reliability and power consumption, already present in plastic circuits.

Although much work lies ahead to make CNTs commercial, Bao believes these carbon filaments are the future of flexible electronics, because they are strong enough to bend and stretch, while also being capable of delivering faster performance than plastic circuitry.

"CNTs offer the best long term electronic and physical attributes," Bao said.

Tom Abate | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: CNT CNTs Engineering N-type circuitry filaments fluctuations materials transistors

More articles from Power and Electrical Engineering:

nachricht Engineering researchers use laser to 'weld' neurons
10.02.2016 | University of Alberta

nachricht Simulating the European electricity grid in 2050
10.02.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Chemical cages: New technique advances synthetic biology

10.02.2016 | Life Sciences

Engineering researchers use laser to 'weld' neurons

10.02.2016 | Power and Electrical Engineering

Drones Learn To Search Forest Trails for Lost People

10.02.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>