Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SRNL research paves way for portable power systems

10.01.2012
Developments by hydrogen researchers at the U.S. Department of Energy's (DOE) Savannah River National Laboratory (SRNL) are paving the way for the successful development of portable power systems with capacities that far exceed the best batteries available today. SRNL's advances in the use of alane, a lightweight material for storing hydrogen, may be the key that unlocks the development of portable fuel cell systems that meet the needs for both military and commercial portable power applications.

SRNL has demonstrated a practical path to portable power systems based on alane and similar high capacity hydrogen storage materials that provide the sought-after high specific energy, which means the amount of energy per weight. Their accomplishments to date include developing a lower-cost method of producing alane, developing a method to dramatically increase the amount of hydrogen it releases, and demonstrating a working system powering a 150 W fuel cell.

Portable power equipment manufacturers are looking for systems that can provide specific energies greater than 1000 watt-hours per kilogram (Wh/kg); that's more than 2 to 3 times the capacity of the best primary lithium batteries today. "Higher specific energy means more energy per weight," said SRNL's Dr. Ted Motyka. "The goal is to provide sufficient energy to a system that is light enough to be carried by a soldier or used in unmanned aircraft and other applications where weight is a factor."

Hydrogen, at 33,000 Wh/kg, has the highest specific energy of any fuel, so it is a natural candidate to fuel such high-capacity systems. The challenge, however, has been developing a material for storing hydrogen with both the high capacity and the low weight needed for portable systems.

SRNL has been working for years on developing several light-weight, high capacity solid-state hydrogen storage materials for automotive applications. While most of these materials do not meet all the various requirements needed for automotive applications, many may be viable for small portable power systems.

One of the most promising materials is aluminum hydride, (AlH3) or alane. Alane, while not a new material, has only in the last few years been considered as a hydrogen storage material for fuel cell applications. SRNL researchers are among only a handful of researchers, worldwide, currently working with alane and beginning to unwrap its material and engineering properties.

Dr. Motyka, Dr. Ragaiy Zidan and Dr. Kit Heung, all of SRNL, led a team to characterize and optimize alane as a hydrogen storage material, develop a small hydrogen storage vessel containing alane, and demonstrate hydrogen release at delivery rates suitable for powering small commercial fuel cells. The results of that work are attracting interest from several commercial companies working in the area of portable power systems.

Alane is one of the classes of materials known as chemical hydrogen storage materials. Like metal hydrides, chemical hydrogen storage materials provide a solid-state storage medium for hydrogen. Unlike metal hydrides, however, chemical hydrogen storage materials, like alane, do not readily reabsorb hydrogen, so once their hydrogen is released the material must be chemically reprocessed to restore its hydrogen. An advantage of alane is its very high hydrogen capacities; it can store twice as much hydrogen, in the same volume, as liquid hydrogen, and can do so at the very high gravimetric capacity of 10 wt%. Alane also exhibits very favorable discharge conditions, making it one of the ideal chemical hydrogen storage materials.

Among the biggest challenges the team addressed were the limited amount of readily available commercial alane, and its high cost to produce – which could be significant impediments to widespread use. As part of this project, they initially developed a bench-scale system to produce the quantities of alane needed for experimental and optimization studies. This work led to the development of a new and potentially lower cost process for producing alane. "Our process overcomes some of the handicaps of traditional methods for producing alane," says Dr. Zidan. "This novel method minimizes the use of solvents, and is able to produce pure, halide-free alane."

Work led by Dr. Zidan also resulted in a process to increase the amount of hydrogen that can be extracted from alane. This two-step process was found to double the amount of hydrogen that can be liberated from alane using a traditional one-step process.

A major part of this project was to evaluate alane systems for compatibility with small fuel cell applications. Preliminary results on a proof-of-concept vessel containing approximately 22 grams of alane showed that the system could scale nicely to meet the required hydrogen release rate for a small 100-watt fuel cell system. Based on those results a larger system containing 240 grams of alane was designed, fabricated and tested with a 150 watt commercial fuel cell. The results show that the system was able to operate the fuel cell at near full power for over three hours and at reduced power for several more hours.

Work to date was funded under SRNL's Laboratory Directed Research & Development program, which supports highly innovative and exploratory research aligned with the Laboratory's priorities. The success achieved so far has attracted additional funding from the DOE's Fuel Cell Technologies Program in the Office of Energy Efficiency & Renewable Energy, along with interest from commercial firms.

SRNL is DOE's applied research and development national laboratory at SRS. SRNL puts science to work to support DOE and the nation in the areas of environmental stewardship, national security, and clean energy. The management and operating contractor for SRS and SRNL is Savannah River Nuclear Solutions, LLC.

Angeline French | EurekAlert!
Further information:
http://srnl.doe.gov/

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>