Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spirals of Light May Lead to Better Electronics

27.09.2013
A group of researchers at the California Institute of Technology (Caltech) has created the optical equivalent of a tuning fork—a device that can help steady the electrical currents needed to power high-end electronics and stabilize the signals of high-quality lasers.

The work marks the first time that such a device has been miniaturized to fit on a chip and may pave the way to improvements in high-speed communications, navigation, and remote sensing.


A photograph of the spiral chip-based optical resonator developed at Caltech, shown next to a quarter to provide scale. Credit: Hansuek Lee/Caltech

"When you're tuning a piano, a tuning fork gives a standardized pitch, or reference sound frequency; in optical resonators the 'pitch' corresponds to the color, or wavelength, of the light. Our device provides a consistent light frequency that improves both optical and electronic devices when it is used as a reference," says Kerry Vahala, Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics. Vahala is also executive officer for applied physics and materials science and an author on the study describing this new work, published in the journal Nature Communications.

A good tuning fork controls the release of its acoustical energy, ringing just one pitch at a particular sound frequency for a long time; this sustaining property is called the quality factor. Vahala and his colleagues transferred this concept to their optical resonator, focusing on the optical quality factor and other elements that affect frequency stability.

The researchers were able to stabilize the light's frequency by developing a silica glass chip resonator with a specially designed path for the photons in the shape of what is called an Archimedean spiral. "Using this shape allows the longest path in the smallest area on a chip. We knew that if we made the photons travel a longer path, the whole device would become more stable," says Hansuek Lee, a senior researcher in Vahala's lab and lead author on the paper.

Frequency instability stems from energy surges within the optical resonator—which are unavoidable due to the laws of thermodynamics. Because the new resonator has a longer path, the energy changes are diluted, so the power surges are dampened—greatly improving the consistency and quality of the resonator's reference signal, which, in turn, improves the quality of the electronic or optical device.

In the new design, photons are applied to an outer ring of the spiraled resonator with a tiny light-dispensing optic fiber; the photons subsequently travel around four interwoven Archimedean spirals, ultimately closing the path after traveling more than a meter in an area about the size of a quarter—a journey 100 times longer than achieved in previous designs. In combination with the resonator, a special guide for the light was used, losing 100 times less energy than the average chip-based device.

In addition to its use as a frequency reference for lasers, a reference cavity could one day play a role equivalent to that of the ubiquitous quartz crystal in electronics. Most electronics systems use a device called an oscillator to provide power at very precise frequencies. In the past several years, optical-based oscillators—which require optical reference cavities—have become better than electronic oscillators at delivering stable microwave and radio frequencies. While these optical oscillators are currently too large for use in small electronics, there is an effort under way to miniaturize their key subcomponents—like Vahala's chip-based reference cavity.

"A miniaturized optical oscillator will represent a shift in the traditional roles of photonics and electronics. Currently, electronics perform signal processing while photonics rule in transporting information from one place to another over fiber-optic cable. Eventually, oscillators in high-performance electronics systems, while outwardly appearing to be electronic devices, will internally be purely optical," Vahala says.

"The technology that Kerry and his group have introduced opens a new avenue to move precision optical frequency sources out of the lab and onto a compact, robust and integrable silicon-based platform," says Scott Diddams, physicist and project leader at the National Institute of Standards and Technology, recent Moore Distinguished Scholar at Caltech and a coauthor on the study. "It opens up many new and unexplored options for building systems that could have greater impact to 'real-world' applications," Diddams says.

The paper, titled "Spiral resonators for on-chip laser frequency stabilization," was published online in Nature Communications on September 17. Other Caltech coauthors on the study include graduate students Myoung Gyun Suh and Tong Chen (PhD '13), and postdoctoral scholar Jiang Li (PhD '13). The project was in collaboration with Caltech startup company hQphotonics. This work was funded by the Defense Advanced Research Projects Agency; the Caltech's Kavli Nanoscience Institute; and the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation.

Written by Jessica Stoller-Conrad

Contact:
Caltech Media Relations
mr@caltech.edu

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>