Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speeding the Search for Better Methane Capture

25.04.2013
Like the Roman god Janus, methane presents Earth’s atmosphere with two situational faces.

As the main component of natural gas, methane when burned as a fuel produces less carbon dioxide than the burning of oil or coal, which makes it a plus for global climate change.


Image shows methane capture in zeolite SBN where blue represents optimal adsorption sites for methane uptake and yellow arrow shows interaction distance.

However, pure methane released into the atmosphere via leaks from unconventional oil and gas extraction, coal mining or from the melting of Arctic ice is an even more potent greenhouse gas than carbon dioxide, contributing an estimated 30-percent of current net climate warming.

To exploit the good and blunt the bad, effective ways of separating and capturing methane must be found. This presents a huge challenge, however, as methane, unlike carbon, interacts poorly with most other materials, making it difficult to physically capture.

Berend Smit, an international authority on molecular simulations who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley, led a computational study that found several promising candidates for methane capture in zeolites, porous minerals widely used as alkane-cracking catalysts in oil refinement. Working with a collaboration that included scientists from Lawrence Livermore National Laboratory (LLNL), Smit and his colleagues conducted systematic in silico studies on the methane capture effectiveness of two different materials systems, nanoporous zeolites and liquid solvents.
None of the liquid solvents, including ionic liquids, tested as being effective, but from more than 87,000 zeolite structures, candidates were discovered that have sufficient methane sorption capacity and appropriate selectivity to be technologically promising.

“Our computational approach lets us screen hundreds of thousands of candidate structures within days, thus enabling the discovery of novel structures that can serve as the building blocks of real, practical technology,” says Smit, who directs UC Berkeley’s Energy Frontier Research Center. “These screening studies show that nanoporous materials with the right geometric constraints are able to enrich the methane concentration of low quality natural gas and coal-mine ventilation air. The next step is to see whether these in-silico studies can be used to guide the synthesis of these materials.”

The most promising of the zeolite candidates was “SBN,” which has a large number of binding sites that are formed in such a way as to maximize its interactions with methane. This results in what Smit and his colleagues characterize as an “extraordinarily high performance” for concentrating methane from a medium-concentration source to a high concentration. For treating coal-mine ventilation air, in which the methane streams are dilute, the best zeolites were those that feature one-dimensional channels with a diameter that is optimal for methane molecules. Zeolites ZON and FER were identified as prime candidates for this purpose.

Working with Smit on this project were Jihan Kim and Li-Chiang Lin, of Berkeley Lab, and Roger Aines, Amitesh Maiti and Joshuah Stolaroff of LLNL.

Additional Information

A paper describing this work has been published in Nature Communications. The paper is titled “New materials for methane capture from dilute and medium-concentration sources,” and can be accessed here:

http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2697.html

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>