Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speeding the Search for Better Methane Capture

25.04.2013
Like the Roman god Janus, methane presents Earth’s atmosphere with two situational faces.

As the main component of natural gas, methane when burned as a fuel produces less carbon dioxide than the burning of oil or coal, which makes it a plus for global climate change.


Image shows methane capture in zeolite SBN where blue represents optimal adsorption sites for methane uptake and yellow arrow shows interaction distance.

However, pure methane released into the atmosphere via leaks from unconventional oil and gas extraction, coal mining or from the melting of Arctic ice is an even more potent greenhouse gas than carbon dioxide, contributing an estimated 30-percent of current net climate warming.

To exploit the good and blunt the bad, effective ways of separating and capturing methane must be found. This presents a huge challenge, however, as methane, unlike carbon, interacts poorly with most other materials, making it difficult to physically capture.

Berend Smit, an international authority on molecular simulations who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley, led a computational study that found several promising candidates for methane capture in zeolites, porous minerals widely used as alkane-cracking catalysts in oil refinement. Working with a collaboration that included scientists from Lawrence Livermore National Laboratory (LLNL), Smit and his colleagues conducted systematic in silico studies on the methane capture effectiveness of two different materials systems, nanoporous zeolites and liquid solvents.
None of the liquid solvents, including ionic liquids, tested as being effective, but from more than 87,000 zeolite structures, candidates were discovered that have sufficient methane sorption capacity and appropriate selectivity to be technologically promising.

“Our computational approach lets us screen hundreds of thousands of candidate structures within days, thus enabling the discovery of novel structures that can serve as the building blocks of real, practical technology,” says Smit, who directs UC Berkeley’s Energy Frontier Research Center. “These screening studies show that nanoporous materials with the right geometric constraints are able to enrich the methane concentration of low quality natural gas and coal-mine ventilation air. The next step is to see whether these in-silico studies can be used to guide the synthesis of these materials.”

The most promising of the zeolite candidates was “SBN,” which has a large number of binding sites that are formed in such a way as to maximize its interactions with methane. This results in what Smit and his colleagues characterize as an “extraordinarily high performance” for concentrating methane from a medium-concentration source to a high concentration. For treating coal-mine ventilation air, in which the methane streams are dilute, the best zeolites were those that feature one-dimensional channels with a diameter that is optimal for methane molecules. Zeolites ZON and FER were identified as prime candidates for this purpose.

Working with Smit on this project were Jihan Kim and Li-Chiang Lin, of Berkeley Lab, and Roger Aines, Amitesh Maiti and Joshuah Stolaroff of LLNL.

Additional Information

A paper describing this work has been published in Nature Communications. The paper is titled “New materials for methane capture from dilute and medium-concentration sources,” and can be accessed here:

http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2697.html

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>