Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving Hydrogen Storage Limit to Power Green Cars

27.10.2009
Hydrogen fuel, because its only byproduct is steam, should be the ultimate in green alternatives to fossil fuels, but it hasn’t delivered on its promise yet because of one enormous stumbling block, storage.

Now a team of chemical engineers at the University of Massachusetts Amherst has developed a computational model that shows that carbon nanotubes may offer a surprising solution. Results are presented in the current online issue of the journal, Applied Physics Letters.

“If this works as we expect, it’s perhaps no longer science fiction to hope for a briefcase-sized hydrogen battery to run a bus or car,” says UMass Amherst chemical engineering professor Dimitrios Maroudas. “Hydrogen storage has been a huge problem in the energy field for the past 10 years because no one has been able to demonstrate a truly viable storage medium. We’ve shown that it’s possible to achieve hydrogen storage capacity up to 8 percent by weight using carbon nanotubes. This is an outstanding level, higher by 1 percent than the 2010 United States Department of Energy target for on-board hydrogen storage systems,” Maroudas adds. “The method we propose may lead to breaking the bottleneck.”

The UMass Amherst computational model strongly lends itself to verification in laboratory experiments, say Maroudas and colleagues, and it provides ample testable hypotheses for future experimental research. “People had been losing faith, but I think our predictions show that hydrogen should be back on the table and in a most promising way. We come up with modeling predictions for technologically relevant problems every day, but this cute model is special,” he notes.

Specifically, Maroudas, his graduate student Andre Muniz and their collaborator M. Meyyappan, chief scientist for exploration technology at the Center for Nanotechnology at NASA Ames Research Center, Moffett Field, Calif., show that proper arrangement of carbon nanotubes can overcome hydrogen transport limitations in nanotube bundles. It should also prevent ineffective and nonuniform hydrogenation, which is caused by nanotube swelling due to chemisorption of hydrogen atoms on the nanotube walls.

If one were to think of carbon nanotube bundles as something like a toothbrush, one strategy that Maroudas and colleagues recommend for holding hydrogen atoms most efficiently is that the brush arrangement should not be too dense. If it is, when the tubules swell they’ll block efficient passage and diffusion of the hydrogen, Maroudas explains. In addition to an optimal bundle density, further improvement can be achieved by optimizing the individual nanotube configurations to limit their swelling upon hydrogenation.

Following this approach should result in one hydrogen atom being able to chemisorb onto — form a chemical bond with — each carbon atom of the nanotubes, leading to 100 percent (atomically) storage capacity, he adds. This chemisorbed hydrogen, bound to the surface, can then be easily released by applying heat.

Maroudas says, “We propose recipes that will be very easy for others to try, by which carbon nanotubes can be arranged to accomplish practically 100 percent storage atomically, which is nearly 8 percent by weight. You can’t get any greener than hydrogen as fuel, and if the experiments we envision lead to new technology that’s economically viable, that’s as good as it gets.” This work was supported by a National Science Foundation grant and a Fulbright/CAPES scholarship to Muniz.

Dimitrios Maroudas | Newswise Science News
Further information:
http://www.umass.edu

More articles from Power and Electrical Engineering:

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Second heat source optimises heat pump system
12.06.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>