Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solutions for an Internet of Energy

26.09.2014

In the EU-funded Artemis research project, Siemens has developed solutions for a future "Internet of Energy."

This Internet of Energy is defined as the networking of relatively autonomous electricity producers and consumers, who determine and cover the energy demand among themselves. Such an infrastructure will become necessary when large numbers of electric vehicles have to be supplied with energy in the future.


The intelligent power grid of tomorrow, the so-called Smart Grid, ensures that energy from renewable energy sources is extensively integrated in private households. Electric cars can be recharged overnight with off-peak energy generated by wind power.

Siemens has, among other things, developed technologies that integrate electric vehicles into the energy management systems of large buildings. The results are being presented at the European Conference on Nanoelectronics and Embedded Systems for Electric Mobility ecoCity eMotion in Erlangen from September 22-26.

Like other energy consumers and small producers, electric cars still operate in a completely uncoordinated manner, feeding energy into the grid at random times and tapping electricity in a similarly arbitrary manner. If their numbers continue to increase, their energy demand and the energy they can supply will have to be planned in advance in order to keep the grid stable.

According to experts, the solution is to create an Internet of Energy that would largely allow consumers and producers to coordinate supply and demand autonomously among themselves. An Internet of Energy would be equipped with smart forecasting systems that would use weather forecasts, traffic expectations and other information to predict future energy demand.

Within the framework of Artemis, Siemens is developing solutions that enable large numbers of small producers to coordinate power generation more or less on their own while maintaining grid stability. The grid is connected to the Internet through secure, seamless interfaces so that the electric vehicles' energy needs can be coordinated with the supply. In the development of this system, the electric vehicles also serve as a model for other decentralized energy consumers and suppliers.

Basically, the aim is to combine the infrastructure - and therefore also the power grid - with the Internet in order to fully control the flow of energy. The necessary information is provided by a range of different systems, including power flow sensors that will be installed at a large number of points throughout the distribution network, even on its medium-voltage lines. Siemens is also developing highly efficient power electronics for charging stations and other systems. In combination with fast energy storage devices, these electronics will ensure optimum grid stability.

During the conference, Siemens is demonstrating its latest developments for the Internet of Energy at its research facility. It is showing how various smart charging stations for alternating and direct current can be integrated into the energy management system of a large functional building. The system regulates and controls the flows of energy and loads within the building. In addition, simulations show how the energy manager can incorporate the current traffic situation - in this case information about the electric vehicles - into its forecasts.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>