Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solutions for an Internet of Energy

26.09.2014

In the EU-funded Artemis research project, Siemens has developed solutions for a future "Internet of Energy."

This Internet of Energy is defined as the networking of relatively autonomous electricity producers and consumers, who determine and cover the energy demand among themselves. Such an infrastructure will become necessary when large numbers of electric vehicles have to be supplied with energy in the future.


The intelligent power grid of tomorrow, the so-called Smart Grid, ensures that energy from renewable energy sources is extensively integrated in private households. Electric cars can be recharged overnight with off-peak energy generated by wind power.

Siemens has, among other things, developed technologies that integrate electric vehicles into the energy management systems of large buildings. The results are being presented at the European Conference on Nanoelectronics and Embedded Systems for Electric Mobility ecoCity eMotion in Erlangen from September 22-26.

Like other energy consumers and small producers, electric cars still operate in a completely uncoordinated manner, feeding energy into the grid at random times and tapping electricity in a similarly arbitrary manner. If their numbers continue to increase, their energy demand and the energy they can supply will have to be planned in advance in order to keep the grid stable.

According to experts, the solution is to create an Internet of Energy that would largely allow consumers and producers to coordinate supply and demand autonomously among themselves. An Internet of Energy would be equipped with smart forecasting systems that would use weather forecasts, traffic expectations and other information to predict future energy demand.

Within the framework of Artemis, Siemens is developing solutions that enable large numbers of small producers to coordinate power generation more or less on their own while maintaining grid stability. The grid is connected to the Internet through secure, seamless interfaces so that the electric vehicles' energy needs can be coordinated with the supply. In the development of this system, the electric vehicles also serve as a model for other decentralized energy consumers and suppliers.

Basically, the aim is to combine the infrastructure - and therefore also the power grid - with the Internet in order to fully control the flow of energy. The necessary information is provided by a range of different systems, including power flow sensors that will be installed at a large number of points throughout the distribution network, even on its medium-voltage lines. Siemens is also developing highly efficient power electronics for charging stations and other systems. In combination with fast energy storage devices, these electronics will ensure optimum grid stability.

During the conference, Siemens is demonstrating its latest developments for the Internet of Energy at its research facility. It is showing how various smart charging stations for alternating and direct current can be integrated into the energy management system of a large functional building. The system regulates and controls the flows of energy and loads within the building. In addition, simulations show how the energy manager can incorporate the current traffic situation - in this case information about the electric vehicles - into its forecasts.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>