Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid nanoparticles can deform like a liquid

13.10.2014

Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets

A surprising phenomenon has been found in metal nanoparticles: They appear, from the outside, to be liquid droplets, wobbling and readily changing shape, while their interiors retain a perfectly stable crystal configuration.

The research team behind the finding, led by MIT professor Ju Li, says the work could have important implications for the design of components in nanotechnology, such as metal contacts for molecular electronic circuits.

The results, published in the journal Nature Materials, come from a combination of laboratory analysis and computer modeling, by an international team that included researchers in China, Japan, and Pittsburgh, as well as at MIT.

The experiments were conducted at room temperature, with particles of pure silver less than 10 nanometers across — less than one-thousandth of the width of a human hair. But the results should apply to many different metals, says Li, senior author of the paper and the BEA Professor of Nuclear Science and Engineering.

Silver has a relatively high melting point — 962 degrees Celsius, or 1763 degrees Fahrenheit — so observation of any liquidlike behavior in its nanoparticles was "quite unexpected," Li says. Hints of the new phenomenon had been seen in earlier work with tin, which has a much lower melting point, he says.

The use of nanoparticles in applications ranging from electronics to pharmaceuticals is a lively area of research; generally, Li says, these researchers "want to form shapes, and they want these shapes to be stable, in many cases over a period of years." So the discovery of these deformations reveals a potentially serious barrier to many such applications: For example, if gold or silver nanoligaments are used in electronic circuits, these deformations could quickly cause electrical connections to fail.

Only skin deep

The researchers' detailed imaging with a transmission electron microscope and atomistic modeling revealed that while the exterior of the metal nanoparticles appears to move like a liquid, only the outermost layers — one or two atoms thick — actually move at any given time. As these outer layers of atoms move across the surface and redeposit elsewhere, they give the impression of much greater movement — but inside each particle, the atoms stay perfectly lined up, like bricks in a wall.

"The interior is crystalline, so the only mobile atoms are the first one or two monolayers," Li says. "Everywhere except the first two layers is crystalline."

By contrast, if the droplets were to melt to a liquid state, the orderliness of the crystal structure would be eliminated entirely — like a wall tumbling into a heap of bricks.

Technically, the particles' deformation is pseudoelastic, meaning that the material returns to its original shape after the stresses are removed — like a squeezed rubber ball — as opposed to plasticity, as in a deformable lump of clay that retains a new shape.

The phenomenon of plasticity by interfacial diffusion was first proposed by Robert L. Coble, a professor of ceramic engineering at MIT, and is known as "Coble creep." "What we saw is aptly called Coble pseudoelasticity," Li says.

Now that the phenomenon has been understood, researchers working on nanocircuits or other nanodevices can quite easily compensate for it, Li says. If the nanoparticles are protected by even a vanishingly thin layer of oxide, the liquidlike behavior is almost completely eliminated, making stable circuits possible.

Possible benefits

On the other hand, for some applications this phenomenon might be useful: For example, in circuits where electrical contacts need to withstand rotational reconfiguration, particles designed to maximize this effect might prove useful, using noble metals or a reducing atmosphere, where the formation of an oxide layer is destabilized, Li says.

The new finding flies in the face of expectations — in part, because of a well-understood relationship, in most materials, in which mechanical strength increases as size is reduced.

"In general, the smaller the size, the higher the strength," Li says, but "at very small sizes, a material component can get very much weaker. The transition from 'smaller is stronger' to 'smaller is much weaker' can be very sharp."

That crossover, he says, takes place at about 10 nanometers at room temperature — a size that microchip manufacturers are approaching as circuits shrink. When this threshold is reached, Li says, it causes "a very precipitous drop" in a nanocomponent's strength.

The findings could also help explain a number of anomalous results seen in other research on small particles, Li says.

###

The research team included Jun Sun, Longbing He, Tao Xu, Hengchang Bi, and Litao Sun, all of Southeast University in Nanjing, China; Yu-Chieh Lo of MIT and Kyoto University; Ze Zhang of Zhejiang University; and Scott Mao of the University of Pittsburgh. It was supported by the National Basic Research Program of China; the National Natural Science Foundation of China; the Chinese Ministry of Education; the National Science Foundation of Jiangsu Province, China; and the U.S. National Science Foundation.

Written by David Chandler, MIT News Office

Andrew Carleen | Eurek Alert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>