Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar-powered Technology for the Swiss Railroad

12.12.2011
Siemens is equipping a large part of the track network of Switzerland's federal railroad (SBB) with its ETCS train control system.

In a contract scheduled to run until 2017, some 430 switch towers and over 9,000 signaling elements are to be upgraded in line with the European Train Control System (ETCS).


More than half of the lineside electronic units supplied are to be powered exclusively by solar cells and will therefore be energy self-sufficient. Compared to an installation of conventional solutions, this will result in power savings for SBB of over 850,000 kilowatt-hours a year. The order is worth a total of €125 million and also covers support for the installed signaling systems over a period of 25 years.

Train control systems supplement the visible signals used to inform train drivers whether they can proceed and the speed at which they may travel. Such systems also transmit signals by radio and, if the driver does not react, automatically apply the brakes of the train. There are currently around 20 incompatible train control systems in use on Europe's railroads. As a consequence, locomotives often have to be switched at borders. The ETCS creates a standard and is used for all new installations. Any upgrades of existing track and trains are carried out as required.

Trainguard from Siemens Mobility and Logistics provides a complete portfolio of solutions for fitting trains and tracks with ETCS-compatible equipment. The elements of the system include so-called Eurobalises — radio beacons mounted on the track to transmit data to an antenna fixed under the train — and lineside electronic units, which transmit information to the balises.

Faced with the need to upgrade its existing signaling systems, SBB opted to switch to ETCS. One major challenge is to replace existing train control systems without a power supply. These serve to transmit a total of three signals — "Go," "Stop," and "Warning" — to the train via magnetic induction. To solve this problem, Siemens has developed a lineside electronic unit equipped with solar cells that generate sufficient energy to transmit information.

This solution not only reduces overall electricity consumption but also saves the cost of installing cables to over 5,000 signaling elements. In areas where more complex data, such as speed information, has to be transmitted, conventional lineside electronic units have been installed. The upgrade will also implement a standard for the switchgear installed in 430 switch towers, where three generations of technology are in use.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>