Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar power, with a side of hot running water

04.05.2011
New system for flat-panel solar power could be combined with hot water systems for greater performance.

MIT researchers and their collaborators have come up with an unusual, high performance and possibly less expensive way of turning the sun’s heat into electricity.

Their system, described in a paper published online in the journal Nature Materials on May 1, produces power with an efficiency roughly eight times higher than ever previously reported for a solar thermoelectric device — one that produces electricity from solar heat. It does so by generating and harnessing a temperature difference of about 200 degrees Celsius between the interior of the device and the ambient air.

The concept “is very radical,” says Gang Chen, MIT’s Carl Richard Soderberg Professor in Power Engineering and director of the Pappalardo Micro and Nano Engineering Laboratories, who co-authored the new paper with MIT doctoral student Daniel Kraemer and collaborators from Boston College and GMZ Energy. The work is funded by the Solid-State Solar-Thermal Energy Conversion Center, an Energy Frontier Research Center at the U.S. Department of Energy.

While solar thermal electricity systems aren’t a new idea, they typically involve vast arrays of movable mirrors that track the sun and focus its rays on a small area. The new approach uses flat, stationary panels similar to traditional solar panels, eliminating the need for tracking systems.

Like the silicon photovoltaic cells that produce electricity when struck by sunlight, Chen’s system is a solid-state device with no moving parts. A thermoelectric generator, placed inside a vacuum chamber made of glass, is covered with a black plate of copper that absorbs sunlight but does not re-radiate it as heat. The other side of the generator is in contact with ambient temperatures. Placed in the sun, the entire unit heats up quickly, even without facing the sun directly.

The device requires much less material than conventional photovoltaic panels, and could therefore be much less expensive to produce. It can also be integrated into solar hot water systems, allowing the expenses of the structure and installation to serve two functions at once. Such solar water heaters are rarely seen in the United States, but are already a highly successful mass-market product in China and Europe, where they provide households with hot water and in some cases space heating as well.

The materials used to build such solar thermoelectric generators, made through a nanostructured process, were developed jointly a few years ago in Chen’s lab at MIT and in co-author Zhifeng Ren’s lab at Boston College. Their teams have continued to work on improving these materials and integrating them into complete systems.

Chen points out that the U.S. Department of Energy has programs to develop thermoelectric systems, mostly geared toward harnessing waste heat from car and truck engines. He says that solar applications for such devices also can “have an important role to play” in reducing carbon emissions. “Hopefully we can prove that,” he adds.

Li Shi, associate professor of mechanical engineering at the University of Texas at Austin, says this approach to solar power is “very novel, simple, and easy for low-cost implementation.” The efficiency level they have demonstrated so far, at 4.6 percent, is “already quite impressive,” he says.

“With the use of other or new thermoelectric materials that can operate at a higher temperature,” Shi adds, “the efficiency may be improved further to be competitive with that for state-of-the-art amorphous silicon solar cells. This can potentially provide a different approach to realizing the $1-per-watt goal for solar-electricity conversion.”

The new system wouldn’t be a substitute for solar photovoltaics, Chen says, but offers “another way” of tapping into the enormous amount of solar energy that bathes the Earth every day. And because it can be piggybacked onto the existing solar hot-water industry, the thermoelectric device could be a relatively inexpensive addition, with “no subsidies required,” Chen suggests. “It can be a game-changing thing,” he says.

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>