Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Panels Track the Sun For More Efficiency

31.01.2011
Photovoltaic modules equipped with a moveable mounting and a new control system from Siemens are able to precisely follow the course of the sun.

Thanks to a new algorithm based on astronomical data, the solar panels track the sun in line with not only the time of day but also the time of year and the precise geographical location of the photovoltaic installation. As a result, their energy yield is more than 35 percent higher than fixed systems.


A decisive factor in the efficiency of a photovoltaic system is the angle of incidence at which sunlight strikes the surface of the module. In the case of fixed panels, sunlight hits the solar cells at an oblique angle for most of the day. A maximum yield in terms of energy and therefore electricity is only achieved when sunlight strikes the cells perpendicular to their surface. So the obvious solution is to fit the solar modules to a movable tracking system that precisely follows the course of the sun. The sun’s position depends on not only the time of day but also the time of year and the location of the photovoltaic installation. The Simatic S7-1200 control system from Siemens therefore calculates the perfect alignment for the solar modules on the basis of their precise location, anywhere in the world, and the exact time and date.

This calculation is based on the “Simatic Library for Solar Position Algorithm,” which is stored in every control unit. Siemens obtained a license for the very precise algorithm from the National Renewable Energy Laboratory (NREL) in the U.S. On this basis, the control system is able to determine the position of the sun to an accuracy of 0.0003° and align the photovoltaic module accordingly. Three-phase AC motors power a dual-axis tracking system: This swivels the module in a semicircle along the azimuthal axis, thus tracking the sun’s daily course from east to west, and tilts the module along the zenithal axis, tracking the height of the sun according to the time of day and year. In the process, the control system also prevents neighboring modules from overshadowing one another during the morning and evening hours, when shadows are especially long. The software bases its astronomical calculations on parameters such as longitude, latitude, and the exact time.

In addition, the control system can also take weather conditions into account. When faced with high winds, for example, it moves the modules to a position of least resistance, where they can withstand winds of up to 130 kilometers per hour. In a similar manner, the tracking system can be programmed to react to snow, thunderstorms, fog, and darkness.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>