Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Panels Keep Buildings Cool

19.07.2011
Those solar panels on top of your roof aren’t just providing clean power; they are cooling your house, or your workplace, too, according to a team of researchers led by Jan Kleissl, a professor of environmental engineering at the UC San Diego Jacobs School of Engineering.

In a study in an upcoming issue of the journal Solar Energy, Kleissl and his team published what they believe are the first peer-reviewed measurements of the cooling benefits provided by solar photovoltaic panels. Using thermal imaging, researchers determined that during the day, a building’s ceiling was 5 degrees Fahrenheit cooler under solar panels than under an exposed roof. At night, the panels help hold heat in, reducing heating costs in the winter.


Tilted solar panels (front), create a stronger cooling efffect than panels flush with the roof.

“Talk about positive side-effects,” said Kleissl.

As solar panels sprout on an increasing number of residential and commercial roofs, it becomes more important to consider their impact on buildings’ total energy costs, Kleissl said. His team determined that the amount saved on cooling the building amounted to getting a 5 percent discount on the solar panels’ price, over the panels’ lifetime. Or to put it another way, savings in cooling costs amounted to selling 5 percent more solar energy to the grid than the panels are actually producing— for the building researchers studied.

Data for the study was gathered over three days in April on the roof of the Powell Structural Systems Laboratory at the Jacobs School of Engineering with a thermal infrared camera. The building is equipped with tilted solar panels and solar panels that are flush with the roof. Some portions of the roof are not covered by panels.

The panels essentially act as roof shades, said Anthony Dominguez, the graduate student lead on the project. Rather than the sun beating down onto the roof, which causes heat to be pushed through the roof and inside the ceiling of the building, photovoltaic panels take the solar beating. Then much of the heat is removed by wind blowing between the panels and the roof. The benefits are greater if there is an open gap where air can circulate between the building and the solar panel, so tilted panels provide more cooling. Also, the more efficient the solar panels, the bigger the cooling effect, said Kleissl. For the building researchers analyzed, the panels reduced the amount of heat reaching the roof by about 38 percent.

Although the measurements took place over a limited period of time, Kleissl said he is confident his team developed a model that allows them to extrapolate their findings to predict cooling effects throughout the year.

For example, in winter, the panels would keep the sun from heating up the building. But at night, they would also keep in whatever heat accumulated inside. For an area like San Diego, the two effects essentially cancel each other out, Kleissl said.

The idea for the study came about when Kleissl, Dominguez and a group of undergraduate students were preparing for an upcoming conference. They decided the undergraduates should take pictures of Powell’s roof with a thermal infrared camera. The data confirmed the team’s suspicion that the solar panels were indeed cooling the roof, and the building’s ceiling as well.

“There are more efficient ways to passively cool buildings, such as reflective roof membranes,” said Kleissl. “But, if you are considering installing solar photovoltaic, depending on your roof thermal properties, you can expect a large reduction in the amount of energy you use to cool your residence or business.”

The study was funded by a NASA Graduate Student Research Program fellowship. Kleissl’s research is funded by the National Science Foundation, California Public Utilities Commission, the Department of Energy and the California Energy Commission. The authors thank the staff of the Powell Structural Lab, especially Andrew Gunthardt, for making the building available for the study.If additional funding became available, Kleissl said his team could develop a calculator that people could use to predict the cooling effect on their own roof and in their own climate-specific area. To further increase the accuracy of their models, researchers also could compare two climate-controlled, identical buildings in the same neighborhood, one with solar panels, the other without.

Ioana Patringenaru | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1094

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>