Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar inverters improve the profitability of photovoltaic power plants

29.10.2010
The Siemens Industry Automation Division is further expanding its product portfolio in the power plants segment by introducing the central inverters Sinvert PVS600, PVS1200, PVS1800 and PVS2400.

These four new models cover the 600 to 2400 kilowatt (kW) output range and enable operators of photovoltaic (PV) power plants to tune their inverters precisely to the capacity of the modules employed in the plant. In this way, the yield and efficiency of the entire PV plant can be optimized.

The planning process is supported by Sinvert Select, the cost-free Siemens software application, which is capable of calculating suitable combinations of inverters and PV modules. Sinvert PVS inverters have a peak efficiency of well over 98 per cent, making them some of the most efficient inverters currently available on the market. Equipped with extensive monitoring capabilities, the inverters can also detect faults in the photovoltaic array and thus minimize downtimes.

Four new inverters developed by the Siemens Industry Automation Division with rated outputs from 600 to 2400 kW have now been added to the successful Sinvert PVS product range. With these new additions, Siemens now offers a total of six model series in the power range above 350 kW, thereby providing 24 different configurations of central inverter. With its extensive product portfolio, Siemens can supply inverters designed to optimize the yield of a very broad range of PV modules. The Sinvert Select software application makes module selection easier. As well as applying factors such as location, grid frequency, PV module type and rated output, it also takes account of installation criteria such as tilt angle and south orientation of the PV modules.

Sinvert PVS inverters are designed to make solar power plants very profitable. Their high peak efficiency of 98.6 per cent (eta EU) contributes significantly to their performance. The Siemens inverter models thus outperform the majority of inverters available on the market. Even a 0.2 per cent increase in efficiency significantly boosts the operating yield of a PV power plant. With rated outputs of 1200 kW and above, the master-slave technique guarantees an even load distribution on all components and extends the service life of the inverters substantially. The new Siemens inverters support grid frequencies of 50 and 60 Hz and are thus suitable for operation on any power grid in the world.

The inverters are controlled locally by touch screen. Furthermore, the operator can use standardized communication interfaces to integrate the Sinvert PVS models into a Scada system (Supervisory Control and Data Acquisition) in order to transfer the inverter data to a control center. Thanks to their extensive monitoring capabilities (symmetry monitoring, for example), the inverters can promptly detect faults in the photovoltaic array without the need for additional sensors on the modules. A frequent cause of module or cable failure, for example, are lightning strikes or other weather-related damage. The longer the defect remains undetected, the higher the loss in yield. Depending on its configuration, the Sinvert PVS inverter immediately notifies service personnel of any faults via Internet or SMS, thus minimizing failure times and loss of earnings.

Like all units in the Sinvert PVS range, the new models are optionally available as a turn-key product, installed in a photovoltaic container with all the necessary medium-voltage components. For installation at locations which are especially dry or close to the sea, these containers can be supplied equipped with special dust or salt filters. The new units also comply with the medium-voltage directive issued by the German Association of Energy and Water Industries (BDEW) with all requirements including FRT (Fault Ride Through) and active power control.

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of environmentally friendly production, transportation, building and lighting technologies. With integrated automation technologies and comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 207,000 employees worldwide Siemens Industry posted sales of about EUR35 billion in fiscal year 2009.

The Siemens Industry Automation Division (Nuremberg, Germany) is a global leader in the fields of automation systems, industrial controls and industrial software. Its portfolio ranges from standard products for the manufacturing and process industries to solutions for whole industrial sectors that encompass the automation of entire automobile production facilities and chemical plants. As a leading software supplier, Industry Automation optimizes the entire value added chain of manufacturers – from product design and development to production, sales and a wide range of maintenance services. With around 39,000 employees worldwide (September 30), Siemens Industry Automation achieved sales of €7.0 billion in fiscal year 2009. www.siemens.com/industryautomation

Reference Number: IIA2010102601e

Peter Jefimiec | Siemens Industry
Further information:
http://www.siemens.com/sinvert
http://www.siemens.com/ia-picture/2601
http://www.siemens.com/industry

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>