Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar energy as a sustainable source of European economic growth

28.11.2008
European researchers call for paradigm shift towards clean fuel technologies

Scientists from leading European research institutions in the field of solar-to-fuel energy conversion call for unified action and substantial support for novel clean fuel technologies as well as a paradigm change in Europe’s current energy policy.

This is crucial if Europe is to maintain its environmental stability and economic development: Direct conversion of solar energy into fuel represents one of the very few major options that humankind has to provide socially, economically and environmentally robust and resilient renewable fuel with energy security that is guaranteed in a humanitarian instead of confrontational manner, according to the Science Policy Briefing “Harnessing Solar Energy for the Production of Clean Fuel” issued by European Science Foundation (ESF).

It is now becoming widely recognised that the public R&D budgets allocated to the renewable energy technologies need immediate and substantial increase. Contrary to the massive public investments to traditional energy sources and energy infrastructure, the share of clean energy in R&D budgets remains as low as at 7-8 percent.

This ESF Science Policy Briefing is the outcome of a discussion among groups of leading European scientists in the field of solar energy and proposes particular steps towards workable research programmes and implementation strategies for better understanding the challenges of clean fuel research and related socio-economic issues. Its main goal is to open a broad debate between the relevant public and private bodies at both national and European level on how to shape Europe’s leadership in this domain.

The scientists involved explain that there are no fundamental engineering concerns that would limit a full-scale commercial use of solar-to-fuel energy conversion in the future. In the paper they identify and project two of the most promising technologies where - given effective support - major scientific breakthroughs are expected:

1. Solar-to-fuel conversion in microorganisms. This technology utilizes modified photosynthetic microorganism s to produce hydrogen and carbon-based fuels from sunlight. Although there are already some research achievements in this field, the Policy Briefing emphasizes that for secure and sustainable solar-to-fuel technology a substantial improvement of efficiency needs to be realised in the next few years. The scientists also call for rapid development of prototype outdoor photobioreactors through partnerships with private sector which would promote further engineering and scientific improvements.

2. Photocatalysis - a development of chemical/physical solar-to-fuel cells (the artificial leaf), mimicks the biological processes that plants successfully use to harness solar energy. The detailed information on how green plants are able to exploit solar energy can be used to design novel technologies capable of using solar energy to produce hydrogen or secondary fuels.

Both technologies have the potential to provide CO2 neutral fuels with a higher efficiency than those based on field crops. And both are independent of the use of arable land mass. Both solutions require long term planning and development. They need additional support to blend the underlying basic science into cross-cutting technological applications. According to these experts this provides a “genuine chance for ‘emerging ideas’” and will give rise to high impact’ science and multidisciplinary cooperation.

In addition to these two fields for joint-action, the policy briefing also addresses social, economic and political factors that are closely related to a new ‘clean fuel’ energy infrastructure.

Social sciences must addressed a whole array of issues and concerns stretching from overcoming opposition to innovation from the current energy industry incumbents to the role of public understanding and engagement in shaping a future energy policy. The overall goal of the social research in this regard will be to forecast the alternative paths in a future solar energy socio-technical system. This would allow for more adaptive and interactive planning instruments.

Finally, the science policy brief addresses the implementation of the outlined research by specific science policies at the European and national levels. As the direct conversion of solar energy to fuel is not yet widely commercialised and profound scientific progress needs to be done, the R&D programmes of national governments and of the European Union has a vital role to play in leading the development of new clean fuel technologies.

The necessary increase in effort includes better research coordination at the European level. This is seen as another crucial condition for a soft transition to a new clean energy infrastructure. In that regard, ESF, with its wide portfolio of instruments, can provide a European platform leading together various national programmes to develop a synergy and to strengthen the Europe-wide collaboration.

Thomas Lau | alfa
Further information:
http://www.esf.org/

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>