Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solar cells: Pillars of light

Nanopillars significantly boost the power conversion efficiency of thin-film solar cells

One of the major challenges in the world today is the energy crisis. The high demand and low supply of fossil fuel are driving up oil and food prices. Silicon-based solar cells are one of the most promising technologies for generating clean and renewable energy.

Using these devices to convert just a fraction of the sunlight that hits the earth each day into electricity could drastically cut society’s dependence on fossil fuels. Unfortunately, however, high-grade silicon crystals demand great care during the manufacturing process, making the resulting high production cost one of the main obstacles in the road to commercialization.

One way to bring down the production cost of these solar cells is to deposit layers of silicon onto cheaper substrates such as plastic or glass. However, this approach has one drawback: silicon thin films have lower power conversion efficiencies than bulk silicon crystals because they absorb less light and contain more defects. Patrick Lo at the A*STAR Institute of Microelectronics and co-workers[1] have now discovered an approach for increasing the power conversion efficiency of silicon thin films deposited on cheap substrates.

Low-grade silicon thin films suffer from one inherent problem: they cannot absorb photons whose wavelengths are larger than their film thickness. For instance, a standard, 800-nm-thick thin film may capture short-wavelength blue light, but will completely miss longer-wavelength red light. “To keep material costs low and improve light efficiency, the trick is to trap more photons, including those with medium wavelengths,” says Lo.

One way to trap more photons in the silicon thin film is to carve tiny silicon pillars—hundreds of nanometers in size—in the silicon surface (see image). Lo explains that the silicon nanopillars are like a forest of trees, in which light enters and cannot easily get out. “When light strikes the surface, it bounces a few more times along or inside the pillars before penetrating the bottom flat surface,” he says. “Each bouncing event increases the chances of photon absorption.”

Lo and co-workers used computer simulations to determine the best configuration for extracting electrical charges from the defect-ridden silicon films. They found that the upper portion of each pillar can be made extremely conductive by introducing large amounts of dopants. Lo and co-workers are now using these practical guidelines to engineer a prototype of this unique concept. “Working with nanostructures is a wonderful way to open paths that could overcome the limits set by conventional physics,” he notes.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Wong, S. M. et al. Design high-efficiency Si nanopillar-array-textured thin-film solar cell. IEEE Electron Device Letters 31, 335–337 (2010).

Lee Swee Heng | Research asia research news
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>