Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoothly moving industrial robots save energy

04.06.2014

Siemens wants to further reduce the power consumption of manufacturing robots in the automotive industry.

One approach to this problems deals with movement patterns that require less acceleration energy, as was reported in the latest issue of the magazine "Pictures of the Future".

Working with Volkswagen and Fraunhofer Gesell­schaft as part of the Green Carbody Technologies (InnoCaT) innovation alliance, Siemens studied the motion sequences of manufacturing robots. The partners developed a simulation model that calculates the best trajectories for robots from the standpoint of energy efficiency.

Tests have shown that this approach can reduce energy consumption by up to half. Goal is to develop a software program that can be used to reprogram existing manufacturing robots to operate in a more energy-efficient manner, without making changes to the production process.

... more about:
»arms »conditions »electricity »mechanical »movement

Manufacturing robots make an automotive factory fast and efficient, but they also consume large quantities of electricity. Particularly in body shell production, where numerous robots are deployed, they account for more than half of the total energy consumed. One approach to saving energy involves the control system.

Today's robots are extremely jerky in their movements. They move their arms along straight lines and brake abruptly at every change of direction before turning and accelerating again. This costs a great deal of drive energy and stresses the mechanics.

In the laboratory, the engineers analyzed a robot's energy consumption in different work steps. They wanted to know the extent to which changes of direction influence power consumption, and determine the parameters that result in the best movement patterns in terms of energy consumption.

This analysis yielded new algorithms for a simulation model that calculates optimal motion trajectories. Based on the lab tests, they found a savings potential of between 10 and 50 percent when the robot's arms move evenly along curved paths. Furthermore, the mechanical parts are placed under less stress, resulting in lower maintenance costs and fewer downtimes.

In the automotive industry it is extremely important that numerous manufacturing robots, which often hand over work to one another in a matter of seconds, operate together smoothly. Long tests under realistic conditions showed that optimized movement patterns can lower energy consumption by up to 50 percent, even with the same cycle times.

A software module that automatically programs a robot's power consumption for a given work process, while also accommodating the interplay with adjacent machines, is under test. Automation is important: It is the only economically feasible way to reprogram thousands of manufacturing robots in a single factory.

Siemens plans to integrate such a module into its Tecnomatix manufacturing software. This will allow existing robots to be easily and safely reprogrammed to consume less energy without requiring new investments in hardware.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: arms conditions electricity mechanical movement

More articles from Power and Electrical Engineering:

nachricht Cooling buildings with solar heat
26.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Philippines’ microsatellite captures best-in-class high-resolution images
22.09.2016 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>