Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartphone App Illuminates Power Consumption

24.11.2009
A new application for the Android smartphone shows users and software developers how much power their applications are consuming. PowerTutor was developed by doctoral students and professors at the University of Michigan.

Battery-powered cell phones serve as hand-held computers and more these days. We run power-hungry applications while we depend on the phones to be available in emergencies.

"Today, we expect our phones to realize more and more functions, and we also expect their batteries to last," said Lide Zhang, a doctoral student in the Department of Electrical Engineering and Computer Science and one of the application's developers. "PowerTutor will help make that possible."

PowerTutor will enable software developers to build more efficient products, said Birjodh Tiwana, a doctoral student in the Department of Electrical Engineering and Computer Science and another of the program's developers. Tiwana said PowerTutor will allow users to compare the power consumption of different applications and select the leanest version that performs the desired task. Users can also watch how their actions affect the phone's battery life.

PowerTutor shows in real time how four different phone components use power: the screen, the network interface, the processor, and the global positioning system receiver.

To create the application, the researchers disassembled their phones and installed electrical current meters. Then they determined the relationship between the phone's internal state (how bright the screen is, for example) and the actual power consumption. That allowed them to produce a software model capable of estimating the power use of any program the phone is running with less than 5 percent error.

PowerTutor can also provide a power consumption history. It is available free at the Android Market at http://www.android.com/market/.

PowerTutor was developed under the direction of associate professor Robert Dick and assistant professor Morley Mao, both in the Department of Electrical Engineering and Computer Science, and Lei Yang, a software engineer at Google. The work is supported by Google and the National Science Foundation, and was done in collaboration with the joint University of Michigan and Northwestern University Empathic Systems Project.

For more information:

PowerTutor: http://powertutor.org/
Robert Dick: http://ziyang.eecs.umich.edu/~dickrp/
Morley Mao: http://www.eecs.umich.edu/~zmao/
Michigan Engineering: The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.engin.umich.edu/

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>