Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart wireless power outlets

01.08.2012
Many homeowners dream of being able to wash a load of laundry when the photovoltaic panels on the roof are delivering a maximum of electricity, even when they are not at home. A new Internet-enabled power outlet will soon allow users to control household appliances via their smartphone, and reduce their energy costs into the bargain.

Soon there will be no need for special timers to switch lighting on and off or operate household appliances when the homeowner is absent. In future, all this can be done by means of a smartphone or PC, thanks to Internet-enabled wireless power outlets that support the new IPv6 Internet protocol.


The table lamp can be switched on and off by means of a smartphone app – thanks to the HexaBus wireless power outlet.
© Fraunhofer ESK

The smart socket was developed by researchers at the Fraunhofer Institute for Communication Systems ESK in Munich in collaboration with the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern and the industrial partner embedded brains GmbH. “We have been able to connect the power outlets wirelessly using the IPv6 protocol,” says ESK research engineer Günter Hildebrandt. “All household appliances plugged in one of the sockets can be switched on and off remotely using an IPv6-compatible device such as a smartphone or laptop PC – from anywhere.”

The wireless power outlets are a component of the HexaBus home automation system that was developed by the ITWM as part of the mySmartGrid project (www.mysmartgrid.de). “The HexaBus components make the smart home of the future a reality. They enable household appliances to be controlled intelligently, thus optimizing or reducing electricity consumption. For example, the householder can start the washing machine during cheap-rate off-peak hours, or run the dishwasher when the photovoltaic panels on the roof are generating sufficient power,” says industrial engineer Mathias Dalheimer of the ITWM, who leads the SmartGrid project and is its chief programmer.

Intelligent control and measurement of power consumption

In addition to the wireless power outlets, the HexaBus system employs a specially designed USB stick that plugs into any compatible, off-the-shelf router. The user enters the command to switch on an appliance via a standard web browser or an Android-compatible smartphone app. The router and stick then forward the data to the power outlet. This two-way communication function also allows the wireless power outlet to send data to the smartphone, informing the user how much power various appliances are consuming at any given time. Thus, the user can optimize their power consumption. “The combination of parallel control and measurement functions is an entirely novel feature that no other wireless power outlet has offered before,” says Hildebrandt.

Because the HexaBus system is based on the IPv6 data communication protocol, a separate IP address is assigned to each power outlet, and thereby to each connected appliance, enabling them to be accessed directly. But how did the researchers go about integrating Internet functionality in the wireless power outlets and USB sticks? To do so, Hildebrandt and his team developed special protocol software and an extension to the Contiki operating system that enables it to handle the 6LoWpan (IPv6 over Low power Wireless Personal Area Network) communication protocol. Contiki is an open-source operating system for networked embedded devices such as the microcontrollers incorporated in wireless power outlets and USB sticks. A linked web browser protocol enables users to assign a separate name to each power outlet – such as “washingmachine.basement”.

Guaranteed data security

Users have no need to worry about the security of their data – all information is transmitted in encrypted form. To make this possible, the experts modified Contiki to enable it to operate with the AES-128 advanced encryption standard. Wireless control signals are transmitted in the 868-MHz frequency band. “This permits users to remotely control a widely distributed network of appliances. The distance between the power outlet and the router can be as high as 30 meters,” explains Hildebrandt.

The HexaBus power outlets are ready for commercial application. Their manufacture has been entrusted to embedded brains GmbH, the industrial partner that was also responsible for the hardware development of the power outlets and USB sticks. Meanwhile, the researchers have a new idea up their sleeves: they want to enhance their system with multihop networking capability. By linking together a series of power outlets, the router will be able to pass messages from one to another, thus extending the range of the communication system – a solution that could be of interest to businesses for their office buildings and industrial sites.

Günter Hildebrandt | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/august/smart-wireless-power-outlets.html

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>