Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart grids to help optimizing the utilization of power grids

10.02.2014
Germany's power grids are not yet well prepared for the current consequences of our Energiewende, wide fluctuations in the supply of electricity from renewable sources, which conflict with patterns of demand.

Smart grids that manage electricity demand at the local – microgrid – level may help to reduce the transmission of electricity over long distances to balance regional over- and undersupply. In the GreenCom project, international partners from industry and research develop and evaluate such a "Smart Energy Management System". It will be demonstrated at CeBIT, March 10 – 14, 2014 in Hannover. Visit us in Hall 9, Booth E40.

The surge in the production of electricity from renewable sources increasingly leads to periods of oversupply, in particular during the daytime: When the sun shines, photovoltaic systems – and there are currently over 1 million panels installed in Germany – generate more electric power than can be absorbed in the regional grids. To enable a load balancing between regions, the capacity of wide-area grids needs to be increased significantly.

At times, however, the demand just doesn't exist. On the other hand, in the early evening hours there may be a demand peak that is difficult to satisfy and may even overburden the grid. To reap the full potential of renewable, environment-friendly solar and wind power and to reduce investments in wide-area grids and transportation losses, we need to better balance supply and demand at the local or regional level. This holds in particular for the highly volatile solar power.

In the GreenCom project, co-funded by the European Commission, a consortium from industry and research develops and evaluates a "Smart Energy Management System" for the local level. Private households and businesses are equipped with smart meters and additional networked sensors, e.g. for measuring temperatures. In near real-time, the system collects, aggregates and analyzes the energy consumption data as well as the renewable electricity generated in the neighborhood. On this basis the management system makes short-term (up to four hours) forecasts of local electricity supply and demand.

"The system is also connected to the major electricity-consuming devices in the households. Thus it can control the operation of heat pumps, refrigerators, washing machines or chargers for electric vehicles", explains Ms. Daniela Fisseler, GreenCom project manager at the Fraunhofer Institute for Applied Information Technology FIT.

Currently the partners in the GreenCom project are building a testbed to evaluate a range of application scenarios and to collect data for the analysis of a number of business models. Initial pilot implementations are available and are being extended. In parallel, the project works with the local electricity company to install the system in the households on the Danish isle Fur. There they will test and evaluate the different concepts for local grid management under real-life conditions, involving about 40 normal consumers and consumers that also produce electricity.

The GreenCom project is partially funded by the European Commission under the 7th Framework Programme (FP7 ICT-2011.6.1 Smart Energy Grids). The project consortium includes Instituto Superiore Mario Boella (coordinator), Sensing & Control Systems (SCS), In-JeT ApS, Tyndall National Institute – University College Cork, Actua A/S, EnergiMidt A/S and Fraunhofer FIT. For more information see: http://www.greencom-project.eu

The GreenCom project will be presented in the CeBIT booth of Fraunhofer-Gesellschaft, Hall 9, E40, March 10 – 14, 2014.

Contact:
Alex Deeg
pr@fit.fraunhofer.de
Telefon +49 2241 14-2208

Alex Deeg | Fraunhofer-Institut
Further information:
http://www.fit.fraunhofer.de
http://www.greencom-project.eu

Further reports about: European Commission FIT GreenCom photovoltaic system smart bridges

More articles from Power and Electrical Engineering:

nachricht Atomic precision: technologies for the next-but-one generation of microchips
24.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Tampering the current in a petri dish
19.05.2016 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>