Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart grids to help optimizing the utilization of power grids

10.02.2014
Germany's power grids are not yet well prepared for the current consequences of our Energiewende, wide fluctuations in the supply of electricity from renewable sources, which conflict with patterns of demand.

Smart grids that manage electricity demand at the local – microgrid – level may help to reduce the transmission of electricity over long distances to balance regional over- and undersupply. In the GreenCom project, international partners from industry and research develop and evaluate such a "Smart Energy Management System". It will be demonstrated at CeBIT, March 10 – 14, 2014 in Hannover. Visit us in Hall 9, Booth E40.

The surge in the production of electricity from renewable sources increasingly leads to periods of oversupply, in particular during the daytime: When the sun shines, photovoltaic systems – and there are currently over 1 million panels installed in Germany – generate more electric power than can be absorbed in the regional grids. To enable a load balancing between regions, the capacity of wide-area grids needs to be increased significantly.

At times, however, the demand just doesn't exist. On the other hand, in the early evening hours there may be a demand peak that is difficult to satisfy and may even overburden the grid. To reap the full potential of renewable, environment-friendly solar and wind power and to reduce investments in wide-area grids and transportation losses, we need to better balance supply and demand at the local or regional level. This holds in particular for the highly volatile solar power.

In the GreenCom project, co-funded by the European Commission, a consortium from industry and research develops and evaluates a "Smart Energy Management System" for the local level. Private households and businesses are equipped with smart meters and additional networked sensors, e.g. for measuring temperatures. In near real-time, the system collects, aggregates and analyzes the energy consumption data as well as the renewable electricity generated in the neighborhood. On this basis the management system makes short-term (up to four hours) forecasts of local electricity supply and demand.

"The system is also connected to the major electricity-consuming devices in the households. Thus it can control the operation of heat pumps, refrigerators, washing machines or chargers for electric vehicles", explains Ms. Daniela Fisseler, GreenCom project manager at the Fraunhofer Institute for Applied Information Technology FIT.

Currently the partners in the GreenCom project are building a testbed to evaluate a range of application scenarios and to collect data for the analysis of a number of business models. Initial pilot implementations are available and are being extended. In parallel, the project works with the local electricity company to install the system in the households on the Danish isle Fur. There they will test and evaluate the different concepts for local grid management under real-life conditions, involving about 40 normal consumers and consumers that also produce electricity.

The GreenCom project is partially funded by the European Commission under the 7th Framework Programme (FP7 ICT-2011.6.1 Smart Energy Grids). The project consortium includes Instituto Superiore Mario Boella (coordinator), Sensing & Control Systems (SCS), In-JeT ApS, Tyndall National Institute – University College Cork, Actua A/S, EnergiMidt A/S and Fraunhofer FIT. For more information see: http://www.greencom-project.eu

The GreenCom project will be presented in the CeBIT booth of Fraunhofer-Gesellschaft, Hall 9, E40, March 10 – 14, 2014.

Contact:
Alex Deeg
pr@fit.fraunhofer.de
Telefon +49 2241 14-2208

Alex Deeg | Fraunhofer-Institut
Further information:
http://www.fit.fraunhofer.de
http://www.greencom-project.eu

Further reports about: European Commission FIT GreenCom photovoltaic system smart bridges

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>