Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smart grids to help optimizing the utilization of power grids

Germany's power grids are not yet well prepared for the current consequences of our Energiewende, wide fluctuations in the supply of electricity from renewable sources, which conflict with patterns of demand.

Smart grids that manage electricity demand at the local – microgrid – level may help to reduce the transmission of electricity over long distances to balance regional over- and undersupply. In the GreenCom project, international partners from industry and research develop and evaluate such a "Smart Energy Management System". It will be demonstrated at CeBIT, March 10 – 14, 2014 in Hannover. Visit us in Hall 9, Booth E40.

The surge in the production of electricity from renewable sources increasingly leads to periods of oversupply, in particular during the daytime: When the sun shines, photovoltaic systems – and there are currently over 1 million panels installed in Germany – generate more electric power than can be absorbed in the regional grids. To enable a load balancing between regions, the capacity of wide-area grids needs to be increased significantly.

At times, however, the demand just doesn't exist. On the other hand, in the early evening hours there may be a demand peak that is difficult to satisfy and may even overburden the grid. To reap the full potential of renewable, environment-friendly solar and wind power and to reduce investments in wide-area grids and transportation losses, we need to better balance supply and demand at the local or regional level. This holds in particular for the highly volatile solar power.

In the GreenCom project, co-funded by the European Commission, a consortium from industry and research develops and evaluates a "Smart Energy Management System" for the local level. Private households and businesses are equipped with smart meters and additional networked sensors, e.g. for measuring temperatures. In near real-time, the system collects, aggregates and analyzes the energy consumption data as well as the renewable electricity generated in the neighborhood. On this basis the management system makes short-term (up to four hours) forecasts of local electricity supply and demand.

"The system is also connected to the major electricity-consuming devices in the households. Thus it can control the operation of heat pumps, refrigerators, washing machines or chargers for electric vehicles", explains Ms. Daniela Fisseler, GreenCom project manager at the Fraunhofer Institute for Applied Information Technology FIT.

Currently the partners in the GreenCom project are building a testbed to evaluate a range of application scenarios and to collect data for the analysis of a number of business models. Initial pilot implementations are available and are being extended. In parallel, the project works with the local electricity company to install the system in the households on the Danish isle Fur. There they will test and evaluate the different concepts for local grid management under real-life conditions, involving about 40 normal consumers and consumers that also produce electricity.

The GreenCom project is partially funded by the European Commission under the 7th Framework Programme (FP7 ICT-2011.6.1 Smart Energy Grids). The project consortium includes Instituto Superiore Mario Boella (coordinator), Sensing & Control Systems (SCS), In-JeT ApS, Tyndall National Institute – University College Cork, Actua A/S, EnergiMidt A/S and Fraunhofer FIT. For more information see:

The GreenCom project will be presented in the CeBIT booth of Fraunhofer-Gesellschaft, Hall 9, E40, March 10 – 14, 2014.

Alex Deeg
Telefon +49 2241 14-2208

Alex Deeg | Fraunhofer-Institut
Further information:

Further reports about: European Commission FIT GreenCom photovoltaic system smart bridges

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>