Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Smart Electric Grid Evolves, Virginia Tech Engineers Show How to Include Solar Technologies

21.08.2012
An economically feasible way to store solar energy in existing residential power networks is the subject of an award winning paper written by two Virginia Tech electrical engineers and presented at an international conference.

Reza Arghandeh of Blacksburg, Va., a doctoral candidate in the Bradley Department of Electrical and Computer Engineering at Virginia Tech, won the best student paper award at the 20th International Conference on Nuclear Engineering, held in conjunction with the American Society of Mechanical Engineering Power 2012 Conference at Anaheim, Calif.. His advisor is Robert Broadwater, professor of electrical and computer engineering, who specializes in electric power system analysis and design.

In their paper, they acknowledge that solar energy resources are “intermittent, seasonal, and non-dispatchable.” However, the current national climate with its deregulation policies, electricity tariffs, control strategies and demand management are “significant tools for flexible and resilient operation of power systems with photovoltaic adoption levels,” Arghandeh argued.

“Selling the household generated electricity into the electric energy market and the storage of electricity in storage systems and demand control systems provide a variety of economic opportunities for customers and utility companies to use more renewable resources,” he added.

Some residential houses are already doing just this – selling power back to an electrical distribution industry. But Arghandeh and Broadwater’s work provides an optimization algorithm for a Distributed Energy Storage (DES) system on a broad scale. The system they developed presents a fleet of batteries connected to distribution transformers. The storage system can then be used for withholding distributed photovoltaic power before it is bid to market, Arghandeh explained.

“Withholding distributed photovoltaic power, probably gained from rooftop panels, represents a gaming method to realize higher revenues due to the time varying cost of electricity,” he said.

Arghandeh is referring to the peak usage of energy systems such as the early evening hours when families return home from school and from work versus the low usage times that occur in the early morning hours when most households are asleep. “The distributed photovoltaic power adoption can be controlled with the help of real-time electricity price and load profile,” he confirmed.

Today’s power systems are moving towards a smart grid concept to improve their efficiencies, reliability, economics, and sustainability. Arhhandeh and Broadwater want to make sure that solar technologies are integrated with the existing technologies like energy storage and control systems.

Specifically, the distributed energy storage system computation they devised is called a discrete ascent optimal programming approach. It insures convergence of the various power systems after a finite number of computational iterations. A solution determined by using their approach depends upon the day ahead forecast of load variation, market prices, and photovoltaic generation.

The output of their optimization algorithm is a distributed energy storage charging and discharging schedule with maximized operation benefits.

Electrical Distribution Design (EDD) of Blacksburg, Va., a leading edge software company serving the utility industry, funded this research.

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>