Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Smart Electric Grid Evolves, Virginia Tech Engineers Show How to Include Solar Technologies

21.08.2012
An economically feasible way to store solar energy in existing residential power networks is the subject of an award winning paper written by two Virginia Tech electrical engineers and presented at an international conference.

Reza Arghandeh of Blacksburg, Va., a doctoral candidate in the Bradley Department of Electrical and Computer Engineering at Virginia Tech, won the best student paper award at the 20th International Conference on Nuclear Engineering, held in conjunction with the American Society of Mechanical Engineering Power 2012 Conference at Anaheim, Calif.. His advisor is Robert Broadwater, professor of electrical and computer engineering, who specializes in electric power system analysis and design.

In their paper, they acknowledge that solar energy resources are “intermittent, seasonal, and non-dispatchable.” However, the current national climate with its deregulation policies, electricity tariffs, control strategies and demand management are “significant tools for flexible and resilient operation of power systems with photovoltaic adoption levels,” Arghandeh argued.

“Selling the household generated electricity into the electric energy market and the storage of electricity in storage systems and demand control systems provide a variety of economic opportunities for customers and utility companies to use more renewable resources,” he added.

Some residential houses are already doing just this – selling power back to an electrical distribution industry. But Arghandeh and Broadwater’s work provides an optimization algorithm for a Distributed Energy Storage (DES) system on a broad scale. The system they developed presents a fleet of batteries connected to distribution transformers. The storage system can then be used for withholding distributed photovoltaic power before it is bid to market, Arghandeh explained.

“Withholding distributed photovoltaic power, probably gained from rooftop panels, represents a gaming method to realize higher revenues due to the time varying cost of electricity,” he said.

Arghandeh is referring to the peak usage of energy systems such as the early evening hours when families return home from school and from work versus the low usage times that occur in the early morning hours when most households are asleep. “The distributed photovoltaic power adoption can be controlled with the help of real-time electricity price and load profile,” he confirmed.

Today’s power systems are moving towards a smart grid concept to improve their efficiencies, reliability, economics, and sustainability. Arhhandeh and Broadwater want to make sure that solar technologies are integrated with the existing technologies like energy storage and control systems.

Specifically, the distributed energy storage system computation they devised is called a discrete ascent optimal programming approach. It insures convergence of the various power systems after a finite number of computational iterations. A solution determined by using their approach depends upon the day ahead forecast of load variation, market prices, and photovoltaic generation.

The output of their optimization algorithm is a distributed energy storage charging and discharging schedule with maximized operation benefits.

Electrical Distribution Design (EDD) of Blacksburg, Va., a leading edge software company serving the utility industry, funded this research.

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>