Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart alternatives to energy guzzlers in electric cars

14.10.2014

Scientists investigate heat transfer in car seats

The government hopes that by 2020 there will be 20 million electric cars on Germany's roads. However, to make electric vehicles attractive to large parts of the population, one of the aspects that needs to be improved is their range.


Intelligent energy management is the key to increased range for electric cars.

©Hohenstein Institute


Figure 1: The scientists are using three scenarios to investigate heat transfer in car seats.

©Hohenstein Institute

The key to this is intelligent energy management, and this includes not only the drive technology and construction of the vehicle but also "energy guzzlers" such as the air conditioning and interior heating systems. In electric cars, both of these have to operate from the power supply, at the expense of the vehicle's range.

In the light of this, scientists from the Hohenstein Institute (Bönnigheim), FILK (Freiberg) and IHD (Dresden) have been investigating the factors affecting the design of thermally optimised car seats. The aims of the project (IGF No.18080 BG) are to establish the theoretical principles behind heat transfer in seat covers, create a model of the processes involved in heat transfer and implement it in the design of improved seating.

The researchers are concentrating on using appropriate materials and combining them intelligently to provide a certain amount of passive climate control. They are not looking at "active" solutions such as heating and cooling systems for seats.

In the first phase of the project, the scientists from the three research institutions are studying the effect of the human body, and the heat it emits, on complex upholstery materials. Firstly, they are considering different seat covers using standard and functional textiles. Secondly, they are basing their work on different usage scenarios (see Figure 1).

The constant factor is the "feel-good temperature" which, with textile surfaces, is 23º C. Various different measuring methods can be used to derive quantitative load factors to describe the material or the combination of materials and their heat conduction properties in dry and moist conditions.

These reference values serve as the basis for simulating the processes involved in heat transfer. These simulations are carried out using what is called the Finite Element Method (FEM), a numerical procedure normally used, among other things, to calculate the dimensions of complex components and assemblies in engineering and vehicle manufacture. It can also be used to represent contradictory physical influences and their effects.

The simulations can then be used to calculate the combinations of materials and structural designs which would have the most positive effect on both heating and cooling behaviour. This knowledge will help small and medium-sized automotive suppliers in particular to secure a competitive advantage for themselves in future by increasing comfort levels, saving energy and reducing development costs.

Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_74946.xhtml

Andrea Höra | Hohenstein Institute

More articles from Power and Electrical Engineering:

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>