Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smaller, more efficient energy-saving chips “made in Europe”

05.10.2016

Research project led by Infineon successfully completed. Joint press information from the partners in the European research project “Enhanced Power Pilot Line”.

In view of climate change, the environmentally-friendly and efficient use of energy is a central challenge for our highly-developed societies. In its strategy “Europe 2020”, the European Commission has set itself ambitious goals in respect of innovation, energy efficiency and reindustrialisation.


EPPL strengthened European industry and research by innovating advanced semiconductor products made in Europe

CTR

The European Research project “Enhanced Power Pilot Line” (EPPL) supports this agenda with the  development of energy- and cost-efficient semiconductor technologies and state-ofthe-art production methods. This will enable the industrial mass production of power electronics in Europe as a production location, with costs that are competitive worldwide.

The EPPL project, coordinated by Infineon Technologies Austria, has now been successfully completed. EPPL started in April 2013 with a term of 42 months, and involved a total of 31 technology partners from six European countries. The total  budget was € 74 million, which was co-financed with funding from Austria (BMVIT), Germany (BMBF), the Netherlands, France, Italy, Portugal and the ENIAC (European Nanoelectronics Initiative Advisory Council) joint undertaking.

“The research project EPPL in association with several successful public-private partnership cooperation activities is of strategic importance for Infineon. Together with the best partners, over the last few years we have been able to extend Europe’s worldwide lead in the development and manufacturing of power electronics”, said Sabine Herlitschka, CEO of Infineon Technologies Austria AG. “We are involved in this research cooperation as coordinator, in order to strengthen the global competitiveness of the European electronics industry.”

Sustainable technologies soon to be market-ready

An important goal of the research project was the further development of manufacturing technologies for energy-saving chips, produced on particularly thin silicon wafers 300 millimetres in diameter. Within the framework of EPPL, a new generation of high-performance semiconductors was developed using 300-millimetre thin wafer production technology, such as ACD7, IGBT, CoolMOS™ and SFET. Pilot lines were successfully used to ensure rapid readiness for series production. Work on tomating the complex production also ensured that the planned manufacture of the new technologies can take place in line with quality and cost standards both in Villach and at the partner factory in Dresden.

Successful application tests demonstrate higher energy efficiency

The efficiency of the energy-saving chips developed during the EPPL project was successfully demonstrated in four selected areas of application. The tests were carried out on inverters for photovoltaics applications, in automotive energy systems and LED lights, and in medical technology on mobile X-ray equipment. Clear savings were achieved in these areas, in terms of both the energy costs and also the size and weight of the chips used. The new power semiconductors exhibit up to 15 percent less energy loss, and depending on the application are between 15 and 50 percent smaller than previously.

EPPL research partners

In total 239 scientists and 20 PhD students were involved in the EPPL, and 124 scientific papers were published. The EPPL partners come from the six European countries Germany, France, Italy, the Netherlands, Austria and Portugal. They include Adixen Vacuum Products, Air Liquide electronics Systems, ams AG, Carinthian Tech Research (CTR), CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie GmbH, the French Alternative Energies and Atomic Energy Commission, Entegris Cleaning Process, EV Group E. Thallner GmbH, University of Applied Sciences of Stralsund, Fraunhofer E.V. IISB, Fronius International GmbH, Heliox BV, Infineon Technologies AG (with branches in Germany, Italy and Austria), International Iberian Nanotechnology Laboratory, Ion Beam Services, KAI, Lear, Max-
Planck-Institut für Eisenforschung, Montanuniversität Leoben, NANIUM S.A., Philips Healthcare (with branches in Germany and the Netherlands), Plansee SE, SPTS Technologies SAS, TU Dresden, Eindhoven University of Technology and Graz University of Technology.

About Infineon Austria
Infineon Technologies Austria AG is a group subsidiary of Infineon Technologies AG, a worldleading  provider of semiconductor solutions that make life easier, safer and greener. Microelectronics from Infineon reduce the energy consumption of consumer electronics, domestic appliances and industrial facilities. They make a major contribution to the convenience, security and sustainability of vehicles, and enable secure transactions in a connected world. Besides Germany, Infineon Austria is the only  subsidiary within the group that pools competencies for research and development, production as well as global Business responsibility. The head office is in Villach, with further branches in Graz, Klagenfurt, Linz and Vienna. With around 3,500 employees from around 60 countries (including 1,300 in research and  development), in the financial year 2015 (ending in September) the company achieved a turnover of €  1.4 billion. An R&D expense rate of 25 percent of total sales makes Infineon Austria the strongest  industrial research company in Austria.

Contact and further information
Mag. Alexander Tarzi
Tel.: 051777-2954
Email: alexander.tarzi@infineon.com
Infineon Technologies Austria AG
Communications
Siemensstraße 2
9500 Villach

Further links:
http://www.infineon.com/austria
http://www.eppl-project.eu
http://www.eppl-project.eu/files/eppl/pdf/media_kit/ctrtimes_EPPL_web-fin.pdf
EPPL Video

Mag Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>